
-
to Science and Engineering Research Council

~ Rutherford Appleton Laboratory
I

~ Chilton DIDCOTaxon oxn OQX RAL-90-067
a::

The Incremental Development of an
Algorithm for Matching with Higher
Order Varlables

J C Bicarregui and B M Matthews

August 1990

The Incremental Development of an Algorithm for
Matching with Higher Order Variables

J.C.Bicarregui and B.M.Matthews
Rutherford Appleton Laboratory

Chilton, DIDCOT,
Oxon OXII OQX.

•
Abstract

We describe the problem of pattern matching with higher order variables as it arises
in the context of theorem provirig in a natural deduction style. The need for a matching
algorithm arises when constructing a justification of lines in proofs. The algorithm
produces the possible instantiations of meta-variables in the rule that lead to a match
with the proof line. The higher order nature of the matching refers to the possibility of
having parameterised meta-variables in the inference rules of the system. The higher
order meta-variables considered here are not as general as those occurring in the lambda
calculus: here syntactic identity is required in the instantiated solutions rather than
incorporating ,a-equivalence as primitive.

In order to address the development of the algorithm, successively specialised cases
of the problem are considered. At each stage formal specifications of the key functions
are given in VDM and then developed in the functional language Standard ML. The
algorithm described by the ML code has been used as a specification for a part of a
larger theorem proving system implemented imperatively.

1 Introduction

1.1 Context:TheMural Proof Assistant

The problem addressed arose in the development of the Mural system.[1, 8]Mural is an in
teractive mathematical reasoning environment designed to assist the kind of theorem proving
tasks that arise when following a formal methods approach to software engineering. It is the
result of work carried out at Manchester University and the Rutherford Appleton Laboratory
under the Alvey IPSE 2.5 project.

The Mural proof assistant is highly interactive in nature and considerable emphasis has been
placed on the design of the user interface in an attempt to enable users to maintain their
intuition of the problem domain and hence guide the proof in the right direction, whilst the
accurate symbolic manipulation of the machine maintains the integrity of the proof.

Mural is founded on a generic logic and can be instantiated for reasoning in a variety of object
logics. Logical theories are constructed in a hierarchical store where collections of declara
tions and axioms are structured along with derived rules and their proofs. Rules can have

-
any number of sequent or ordinary hypotheses and a single, ordinary conclusion. The syntax
of the logic in question is defined in the Mural "meta-syntax". To give a few examples, there
are Mural expressions forms for compound expressions like f(x, y, z}, binder expressions,
like \Ix: A· P(x), and compound types like A x B~ and subtypes like < z ; T I P[x] >.
Proofs are constructed in a natural deduction style, where the reasoning can be forwards,
backwards or "mixed". That is proofs can be constructed from the hypotheses or the con
clusion, or from some point in the middle. The choice of rules to apply is determined by the
user although there is a tactics language that can be used to "code up" common reasoning
strategies. As far as possible a laissez-faire attitude is taken to the construction of proofs
- there is no insistence that rules must themselves be proven before they are used in other
proofs - Mural carries out the book-keeping required in order to maintain integrity of the
system, tracking the dependencies of proofs upon others and checking for circularities. ..

1.1.1 Pattern matching in Mural

In the normal way, inference rules of the object logic are expressed as axiom-schemata by
augmenting the object level syntax with the notion of meta-variables that can be instantiated
to any object level expression. The need for a matching algorithm arises when considering
the use of an inference rule to construct a justification for a line in a proof. For example, a
rule such as
I I a = b, P(a)
--subst P (b)

can be applied to the lines

(1) 3*x=f(x)
(2) even(3 * x)

to justify the line

(3) even(f (x))

Alternatively this could be applied with line (1) as a hypothesis, line (3) as the conclusion,
to derive line (2) as a new line to be justified.
In this case P is a "higher order" meta-variable of arity 1: its parameter a is itself a meta
variable of arity 0 which can be instantiated to any part of the matched expression for P. The
potential matches are constrained by the same matching substitution being valid across all
the expressions to be matched. Thus in the above simple example, the following substitution
is used.

a ~ 3 *x
b ~ f(x}
P ~ even(_}

Here, the underscore, ";", represents a space-holder, or "hole" in the pattern, which is filled
in the generation of the object level expression. In practice these holes are numbered. Note
that z is an object level variable, and as such is not instantiated in the matching process.

2

Thus the higher order nature of the matching refers to the possibility of having patterns within
patterns, rather than a full ,a-reducing matching in the sense of Huet [6]. This makes the
algorithm more straightforward and finitary. However, this syntax is still quite expressive.
For example, higher-order meta-variables (those of non-nullary arity) can be nested. Thus,
the expression P[Q[a]] where a is an nullary meta-variable and P and Q are both unary
higher order meta-variables can be matched to the term 3 + 4 + 5 via the instantiation:

P 1-+ 3 +_,Q 1-+ 4 +_,X 1-+ 5.

The algorithm produces all the possible instantiations of meta-variables in the rule that lead
to a match with the proof line. In the last example, the following three instantiations would
also be valid:

P 1-+ 3 + 4 + 5,
p 1-+ 3 + 4 +_,Q 1-+ 5,
P 1-+ 3 + 4 +_,Q 1-+ _, X 1-+ 5.

•

In total there are 32 valid solutions to this example.

The Mural system itself was initially specified in VDM [7]. The original algorithm was then
coded directly from this high level specification. This was an exhaustive search method which
sought out all the possible instantiations for each of the variables independently and then
retrospectively analysed them to find out which combinations of the individual solutions had
no clashes. While this was a succinct way of specifying the problem, as an implementation
method it proved to be too inefficient to be practical. The central idea behind the algorithm
presented here is straight forward. We must traverse the structural tree of the matched term
building up tentative instantiations "as we go" and carrying them around with us. When
a meta-variable is encountered the possible instantiations of it are compared to each of
the partial instantiations we have so far; when clashes occur those candidates are rejected
immediately. Whilst no claim is made that the algorithm presented here is in any way
optimal, it does to some extent make use of available information an~ hence avoid re.dun~~t
computation and in practise is sufficiently efficient for the interactive use for WhIChIt IS
intended.
The purpose of this paper is to exhibit the techniques employed in the deconstruction of the
problem rather than to introduce any new or deep methods. Thus, the algorithm is exhibited
over a very simple expression syntax. Binary trees suffice for our purposes.

1.2 Related Work

The problem of higher order unification is well documented, in particular by [6], where an
algorithm is presented that generates unifiers in typed lambda calculus. This is the basis of
the unification that drives the reasoning in Isabelle [10]. The problem considered here is
more restricted in two ways. Firstly, following in the LCF style [4], meta-variables from the
statement of the rule become parameters of the proof and are treated as though they were
constants in the text of the proof, not amenable to instantiation, thus making the matching
one-way. Secondly ,a-reduction is not primitive to the equivalence of expressions in our
treatment. The problem of higher order matching with ,a-reduction has been less widely

-
researched. [2] gives a formal derivation of an algorithm for this in a restricted version
of typed lambda calculus using transformational techniques. The distinction between this
and our approach can be seen by considering the following example. Matching modulo
,a-reduction of a constant, E, against the higher order functional X[Ax.x] yields the infinite
set of solutions:

X I---? >..y.E,
X I---? >..y.y(E),
X I---? >..y.y(y(E)),

or

Our approach would not permit these solutions since we insist that resulting instantiated
forms must be syntactically identical rather than ,B-equivalent. This restriction ensures that
there can only be finitely many matches.
We make no claim that the algorithm we present is the most efficient. For example, there
is no attempt to exploit common information in the style of Martelli and Montenari [9].
Our treatment merely avoids some redundant recomputation by making use of the partial
solutions already computed.

1.3 Overview

In the remainder of this section we give a brief review of some related work on higher-order
matching. In Section 2 we give an informal description of the specific problem that we are
tackling, and of how the problem was broken down. Section 3 introduces the notational
conventions that we use and in the following sections, 4, 5 and 6, we give the specifications
and implementations of the three cases of the problem in increasing generality. Section 7
gives a brief description of how this was then incorporated into Mural, and draws a few
conclusions from the exercise.

2 Developing the algorithm

2.1 Extracting the essence of the problem

In order to address the development of an algorithm for the matching, the problem is sub
jected to a series of simplifications. Firstly, we only consider the matching of expressions;
the generalisation to sequents and rules is not difficult. Secondly, we choose an object
level syntax that is as simple as possible to demonstrate the issue in hand, labelled binary
trees are our example. Again the generalisation, to the generic logic syntax of Mural, was
straightforward.

The problem of matching considered in this paper is, given an expression without meta
variables, known as the Matched Expression and a sequence of expressions with meta
variables, known as the Matching Expressions, derive all the possible combinations of a
context, that is, an expression with integer labelled holes for place-holders, and a substitution,
in such a way that when each hole in the context is filled with the matching expression from

4

the sequence corresponding to the label of that hole, and then the substitution is applied,
the matched expression results. We will give a formal description of this later. For now we
present a small example. If the matched term is

a(l, b(2, 3)),

and the sequence of matching terms is

[x,b(2, y)],

with x and y meta-variables, then one possible solution is the context

a(ITI,~, •

together with the substitution

X f-+ 1, y f-+ 3

where the ill are the labelled holes.
We break down the development of the algorithm into three stages each addressing suc
cessively more complex kind of matching. Firstly we just consider the framework for the
matching by not allowing any meta-variables in the syntax. The only matches here are iden
tities. Whilst this is a trivial step as there are no substitutions to be concerned with, it does
set up the framework for the algorithm and establishes the flow of control to be employed.
Secondly we introduce the possibility of meta-variables into the matching terms. These can
match any expression in the matching terms, but do not allow these meta-variables them
selves to have arguments. In this stage we introduce the matching substitution, and use the
well-formedness of substitutions to determine the validity of a match while the pass over the
matched term is still in progress. Lastly we extend to higher-order meta-variables. That is
meta-variables with arguments which may themselves contain higher-order meta-variables.
We will see later that, although it is this final generalisation that makes the problem interest
ing, it turns out to be a very simple matter to generalise the algorithm.
At each one of these stages the matching task is subdivided into three successively specialised
functions. The most specific is the one that actually does matching. The others serve to
provide the search over the matched expression and the sequence of matching expressions
respectively. Thus, each stage of generalisation is basically a matter of adding extra cases
to the matching function whilst the other two functions change little. In particular the final
"interesting" generalisation is achieved simply by adding a function application that makes
the three functions mutually recursive.

3 Notation

The specification language used is VDM [7] and the implementation language Standard-ML
[5]. It is worth making a few short comments about these languages.

3.1 General style

We choose to specify our problem in VDM. Although we require only a restricted part of
the language, the availability of subtyping (inclusion polymorphism) was of great use to us.
The VDM specification language is based on set theory and a three valued logic of partial
functions, LPF. Normally used to specify imperative programs, VDM incorporates a notion
of state and operations on that state. However we only define types and functions on those
types. Indeed we only make use of explicit (though non-constructive) functions.

Our implementation is in Standard ML. Standard ML is a strict, polymorphic functional
programming language, though its type polymorphism does not allow for subtyping in the
style of VDM, either by inclusion-polymorphism or by data-type invariants. The features of
the language exploited here are those of user defined datatypes, pattern matching, and the
use of simple higher order functions. Together these allow a great degree of brevity in the
code and thus it proved to be an ideal language for experimentation with these algorithms,
the brevity of the code exposing the control structure of the algorithm.

The two notations complemented each other very successfully and although no systematic
proofs have been attempted, the combination of the complementary features of the two
notations gives us confidence in the correctness of the implementation.
A degree of familiarity with both VDM and StandardML (or at least functional programming)
is assumed throughout this paper. Specialised constructs are explained, but the general
methodology of both languages is not.

•

3.2 Specific conventions

The following notational conventions will be used throughout the formal texts that follow:

e, ej, E, E, will stand for expressions; where appropriate small letters will stand for the
matching expression and capitals for the matched expression.

C, c, for contexts.

S, s; S' for substitutions.

The following abbreviations will also be used for the abstract syntax of expressions, described
in more detail below.

Aj for leaf (i) ,

Va[e}, ... ,en] for var (" a" , lei, ... ,en]) , and

'Pj forhole(i).

4 Spec 1: No Variables

In the first specification, only the framework for matching is set up. No instantiation of
variables is considered - the only matches being identities. This is a trivial step as far as the
matching is concerned, but it sets up the search strategy.

4.1 Abstract Syntax

Expressions are simply binary trees with leafs labelled by integers and nodes labelled by
strings. We express this in a "ML like" syntax. Note that we cannot use this in the ML
implementation as ML does not have subtyping. However, we wish to use subtyping in the
VDM specification.

•

Exp = leaf of int
node of (string * Exp * Exp)

Contexts are expressions where any subtree can be replaced by a numbered hole. They are
numbered so that they can be filled in systematically.

Context = leaf of int
hole of int
node of (string * Context * Context)

4.2 Function Specifications

We utilise an auxiliary function that describes the "filling-in" of holes in contexts:

Jillholes : Cont x Exp" -+ Exp

fillholes(c, [el,"" enD 6. c [ei/<,?i]i=l, ...,arity(c)

pre arity(c) ~ n

The arity of a context is the largest index of one of its holes.
We will write fillholes as an "infix symbol of zero width", i.e.

c[et, ... , en] 6. fillholes(c, [el , ... , en])

We define three matching functions that deal with decreasing levels of generality. Firstly
match which finds all the possible matches:

match: Exp x Exp* -+ Cont-set

match(E,[et, ... ,en]) 6. {c I c[et, ... ,en] = E}

7

-
For example:

match('fJa().,t,).,2), [)"t,).,2, 'fJa().,t,).,2)]) = ['fJa().,I,).,2), 'fJa().,t,'P2)' 'fJa('PI,).,2), 'fJa('Pt,'P2), 'P3]

Secondly we define a function herematch that is very much like match, but additionally
insists that the returned context is a hole. The specification can be written by adding a
conjunct to the post condition:

herematch :Exp x Exp* ---+ Cont-set

herematch(E,[el, ... ,en]) /:::,. {c I c[et, ... , en] = E /\:3j E {l, ... ,n}. c = 'Pj}

However this specification simplifies to:

herematch :Exp x Exp* ---+ Cont-set

herematch(E, [el, ... , en]) /:::,. {(c) I :3j E {l, ... , n} . c = 'Pj /\ ej = E}

Since we know that the returned contexts are just indexed holes, alternatively, herematch
could return a set of the indices.

Thirdly fullmatch has the further restriction that it just takes a single expression, at this level
that makes it just a test for equality, later it will return substitutions.

fullmatch : Exp x Exp ---+ B

fullmatch (E, e) /:::,. e = E

4.3 Implementation

We give an implementation of the functions of match, herematch and fullmatch. Note that
there is no subtyping in Standard ML and so the most general fonn for the abstract syntax
is taken. Thus the datatype Context is used in all cases: the typing information given in
ML comment brackets (* ... *) is just an aid to the reader. Note that if a match against an
ill-formed term (that is a hole) is attempted, then an the function failwith is called which
raises an exception with a message. Also, where sets are used in the specification, lists are
used in the implementation: though an abstract data type of sets could be defined we feel
this is not relevant to the topic under consideration..
As already mentioned, a degree of familiarity with a functional programming style is assumed
here. For the Standard-ML syntax, it is sufficient to note that function definitions are in
troduced by the keyword fun, local declarations within the keywords let ... in ... end,
and case expressions with case ... of ... => ... I ... => Extensive use is made
of pattern matching on the data type in function declarations and case expressions.

Also note that _ : : _ is the infix constructor for concatenating onto the front of a list, _@_ is
the infix operator for appending two lists together, and _0_ is the infix operator for function
composition, (fog)x = f(g(x)) .

Now the three main functions.

(*
match : Exp -> Exp list -> Context list
*)
fun match (leaf i) el = leaf i herematch (leaf i) el

I match (node(s,el,e2» el =
let fun makenodes (1::11) r = node(s,l,r)::makenodes 11 r

I makenodes [] = []
in herematch (node(s,el,e2» el

@ mapapp (makenodes (match el el» (match e2 el)
end

match (hole = failwith "cannot match on a hole"

match is the top level function which controls the search. The crucial case is the second,
where a call to herematch finds all the exact matches of this term with the elements of
the expression list and then recursively calls itself on first the left and then the right subtrees
to find all the possible matches on subterms. The local function makenodes rebuilds the
expression with the holes in the subterms. mapapp is an auxiliary higher-order function.

•

(*
mapapp
*)
fun mapapp(f, []) = []

mapapp(f,h: :tl) = f h @ mapapp(f,tl)

('a -> 'b list) -> 'a list -> 'b list

which takes a function returning a list, maps that function over a list and returns the resulting
list formed by appending the resulting lists together.

(*
herematch : Exp -> Exp list -> Context list
*)
fun herematch el es =

let fun herematchi (e::el) i =
if fullmatch el e
then hole i :: herematchi el (i+l)
else herematchi el (i+1)

herematchi [] = []
in herematchi es 1
end;

herematch,which controls the matching of an entire expression "here", calls the fully
matching function with respect to each of the matching expressions in turn. At this, variable
free, level, the fully-matching function merely returns a boolean value. If there is a match
of the matched expression's subexpression and the matching expression, the expression is
replaced with a hole labelled by the number of the matching expression, given by its position
in the list. Thus the ordering property of the list of matching expressions is vitally important
if the result of the matching algorithm is going to be meaningful.

(*

9

fullmatch : Exp -> Exp -> bool
*)
fun fullmatch Tl T2 =

(case (Tl,T2) of
(hole) => failwith "cannot match on a hole"
(, hole) => failwith "cannot match on a hole"
(leaf i,leaf j) => i = j
(node(s,tl,t2),node(s' ,tl' ,t2')) =>
s = s' andalso fullmatch t2 t2' andalso fullmatch tl tl'

=> false)
;

fullmatch is the function which carries out the case analysis on the matched and matching
expressions. At the variable free level this is a trivial inductive identity comparison of the
labels on leafs and on nodes.

It can be seen that the exercise of matching between expressions which do not include vari
ables is a comparatively trivial one. However it is one worth going through as it establishes
several important points of strategy which become more important later.

5 Spec 2: Ordinary Variables

We now consider the extension of the matching algorithm to cater for the use of ordinary,
first-order variables within the matching expressions.

5.1 Abstract Syntax

The expressions from above become the ground terms (full expressions) at this level:

FullExp = leaf of int , node of (string * FullExp * FullExp)

Normal expressions can have variables (named by strings) that will be instantiated by
FullExps:

Exp = leaf of int
node of (string * Exp * Exp)
var of string

Contexts become:

Context = leaf of int
"' node of (string * Context * Context)
, var of string
, hole of int

10

We shall also sometimes refer to the type of Variables, which are Expressions restricted to
variables, and use the obvious function that returns the variables in a context.

variable = var of string

vars: Context ~ Variable*

5.2 Substitutions

A substitution records an instantiation of variables. It is given as a finite function, or map
in VDM terminology, from variables to expressions.

Substitution = Variable ~ Exp •

We distinguish substitution Empty which has the empty set as its domain.

dom Empty = {}
The application of substitutions will be written like ordinary function application.

S(e)b.. e [ei/vi](lI;•....•ei)ES

We define two functions on substitutions that although not required in the specification will
be used in the implementation. Firstly, a function that extends a substitution by adding a
Variable/Expression pair in such a way that does not break the condition of it being a map.

add_subst : Variable x Expression x Substitution ~ Substitution

add_subst(v, e, S) b.. S t (v ~ e)

pre v E domS =? S(v) = e

Secondly, the extension of this function which acts over a sequence of substitutions. For
each substitution in the sequence, it attempts to extend it with the Variable/Expression pair.
If it can do so it does, otherwise it discards the substitution as it would give a clash of
assignments to the variable.

map_add_subst : Variable x Expression x Substitution* ~ Substitution-set

map_adLsubst(v, e, [S}, ... , Sn]) b..
{S' I 3i E {l, ... , n} . S' = add_subst(v, e, Sin

Note that if the last conjunct in the predicate part of the expression holds then it must certainly
be defined and hence its precondition must hold.

5.3 Function Specifications

Now we present the three main functions:

11

match :FullExp x Exp* x Sub: ~ (Cont x Sub) -set

mateh(E, [eI, ... , en], [SI, ... , Sk)) b.
((e,S') I S'(e[eI, , en)) = E 1\

:li E {l, , k} . vars(e[el, ... , en)) ~ S' ~ s, ~ S'P

The first conjunct says that the resulting substitution has the correct effect on the "filled"
context. The second says that this new substitution extends one of those passed in and
furthermore that no superfluous maplets are added to the substitution.

The next function adds the restriction that the returned context must be a hole:

heremateh :FullExp x Exp* x Sub" ~ (Cont x Sub) -set

heremateh(E, [eI, ... , en], [SI, ... , Sk]) b.
{(e, S') I S'(e[eI, , en)) = E 1\

:ljE {l, ,n}. e = 'Pi 1\
:li E {l, , k} . vars(e[eI, ... , en]) ~ S' ~ S, ~ S'}

Which simplifies to:

heremateh : FullExp x Exp* x Sub* ~ (Cont x Sub)-set

heremateh(E, [el, ... , en], [S1, ... , Sk]) b.
{(e, S') I 3j E {t, ,n} . e = 'Pi 1\ S'(ei) = E 1\

3i E {l, , k} . vars(e[el, ... , en]) ~ S' ~ s. ~ S'}

The third function restricts further: by only taking a single expression as second parameter,
there is no need to return a context, as the only one we are interested in would be 'Pl.

fullmatch :FullExp x Exp x Sub" ~ Sub-set

fullmatch (E, el, [SI, .. , Sn]) b.
{S' I S'(el) = E 1\

3i E {l, ... ,k} . vars(e[eI, ... , en)) ~ S' S;s, S;S'}

5.4 Implementation

The major difference in the implementation of this second level of matching is the introduc
tion of substitutions. This is represented as an abstract datatype.

abstype Substitution = Sub of (string * Context) list I Fail

Thus a substitution is represented by an association list of variables (represented by the string
labelling them) and contexts. In addition, we introduce the element Fail which handles the
exceptional case when in attempting to extend a substitution, a clash of variables is found
and no valid substitution can be found. This case could be handled in Standard ML by

l..;a is relation domain deletion, defined by S <a R = {(a, b) E R I aft S}

12

raising an exception which is handled by the calling function. However, it is much more
within the functional programming style to lift the datatype with a error value.

We do not give the whole definition of the functions on substitution, merely the signatures
of the supplied functions.

abstype Substitution
val Empty = - : Substitution
val add_subst = fn: (string * Context)->(Substitution->Substitution)
val map_add_subst = fn : (string * Context) ->

(Substitution list -> Substitution list)
val apply = fn : Context -> (Substitution -> Context)
val print sub = fn : Substitution -> string

•
Empty is the identity substitution which assigns no variables.

addcsubst; inserts a variable (simply represented by string) and its assigned expression
into an existing substitution. Should the variable already be assigned to another value, the
Fail substitution is generated.

rnapcadds sub st; inserts a variable/context pair into every element of a list of substitutions.
Should the failure substitution be generated at any stage it is immediately discarded. Thus
by using this function, variable clashes are detected straightaway, and the substitutions are
discarded.

Not all of these functions are used in the matching code: for example nowhere in the
generation of the matching substitution do we actually apply a substitution. However, appli
cation can be used for checking the correctness of solutions found and so is included in the
abstype.

With the introduction of substitutions, the three functions become:

(*
match Exp -> Exp list -> Substitution list

-> (Context * Substitution) list
*)
fun match (leaf i) Explist S =

(map (pair (leaf i)) S) @ (herematch (leaf i) Explist S)
match (node(s,el,e2)) Explist S =
let fun makenodes (1, ((r,m) ::l')) =

(node(s,l,r),m) ::makenodes (1,1')
makenodes (1, []) = []

val allmatches =
mapapp (makenodes 0

(applysndpair (match e2 Explist 0 singleton)))
(match el Explist S)

in
allmatches @ (herematch (node(s,el,e2)) Explist S)

end
match (hole
match (var

TL S
TL S

failwith "cannot match on a hole"
= failwith "cannot match on a var"

match is essentially undertaking the same strategy as before. On the matched expression
being a node, in calculating the local value allmatches it finds all the matches on the
left sub-expression, resulting in a list of context, substitution pairs and then matches on the
right subexpressions in the environment of the each of the generated lef~ subexpressions
substitutions in turn. Thus any clashes between matches on the left and nght subtrees are
detected and eliminated as soon as they are found. makenodes rebuilds the contexts by
taking the left hand context and the list of valid right-hand contexts and substitutions and
reconstructing them returning a list of contexts at the level of the calling match.

applysndpair and singleton are two technical auxiliary functions:

(*
applysndpair : ('b -> ' c) -> (' a * 'b) -> (' a * , c)
*)
fun applysndpair f (afb) = (aff b)
(*
singleton: fa -> fa list
*)
fun singleton a = [a]i

the first takes a function and a pair, returning a new pair with the second element replaced
by the result of applying the function to it, and the second takes any value and returns the
singleton list of that value.

herematch is identical to that in the previous section except that it passes a substitution
list to the fully matching function which returns a list of valid substitutions (rather than a
boolean). These are then paired off with the hole labelled by the current matching expression.

(*
herematch Exp -> Exp list -> Substitution list

-> (Context * Substitution) list
*)
fun herematch el es S

let fun herematchi (e::el) i
map (pair (hole i» (fullmatch el e S) @

herematchi el (i+l)
herematchi [] = []

in herematchi es 1
end

Again the function fullmatch is a case analysis which inductively checks for identities
on the labels of leafs and node. However, when a matching variable is found, a new
substitution is generated by assigning the matched expression to it. This is generated in the
context of the current set (represented as a list) of substitutions, discarding (by the use of
the mapvaddcsub st; function) those which would have variable clashes.

(*
fullmatch Exp -> Exp -> Substitution list -> Substitution list

14

*)
fun fullmatch E1 E2 S =

(case (E1,E2) of
(hole)
(, hole)
(var)
(leaf i,leaf j)

=> failwith "cannot match on a hole"
=> failwith "cannot match on a hole"
=> failwith "cannot match on a var"
=> if i = j then S else []

(node(s,e1,e2),node(s',e1',e2'» =>
if s=s' then fullmatch e2 e2' (fullmatch e1 e1' S) else []
(, var x) => map_add_subst (x,E1) S

=> [])
;

•
6 Spec 3: HO Variables

Finally we allows expressions with higher order variables. A higher order variable has
as parameter a list of expressions, which can in themselves contain higher-order variable.
Higher order variables can be instantiated to contexts and then the parameter expressions can
fill any holes these contexts. When the list is empty they behave like ordinary variables.

6.1 Abstract Syntax

Full expressions are unchanged:

FullExp = leaf of int I node of (string * Exp * Exp)

Variables are extended to admit higher order variables:

Exp = leaf of int
node of (string * Exp * Exp)
var of (string * Exp list)

Contexts are expressions where any subtree can be replaced by a hole.

Context leaf of int
node of (string * Context * Context)
var of (string * Context list)
hole of int

Note variables in Contexts can have holes in their parameters but variables in Expressions
cannot.

6.2 Substitutions

Substitutions must now allow for higher-order variables to be mapped to contexts which
themselves may have holes within them. To cater for this, notion of the application of

15

-
substitutions has to be extended to allow for the substitution of parameters into these holes.
Also, in the expression the substitution is being applied to, the variable is supplied with
parameters, which themselves may have higher-order variables. These are used to fill in the
holes of the context and the substitution is applied to them recursively. Formally, substitution
application becomes:

S(e)l:!. e (ci[S(el), ... , S(en)] / vi[el, ... , en]](Vi>-+Ci)eS

Implicitly, there is a well-formedness condition on this formula. The fillholes function can
only be applied to the context if the number of parameters supplied is less than or equal to
the maximum number of formal parameters the higher-order variable can take.

In the degenerate case of a higher-order variable with no parameters, this becomes the same
as the first-order case described previously.

•

6.3 Function Specifications

With the recognition that the notion of substitution has been extended to allow for higher
order variables, the specifications of the matching functions remain unchanged.

6.4 Implementation

Having set up the framework for the matching algorithm, modifying it to allow for the
generation of higher-order contexts is very simple. match and herematch are identical.
The only change which we need to carry out to the code is in the var case of fullmatch.
This now splits into two cases. When the list of context expressions carried by the variable
is empty, the variable acts as a normal first-order variable, and the new substitution list is
formed in the same fashion as before. However, if the list of context expressions is non
empty then we make a call to the match function thus making the three functions mutually
recursive.

fun match
and herematch
(*
fullmatch : Exp -> Exp -> Substitution list -> Substitution list
*)
and fullmatch El E2 S =

(case (El,E2) of
(hole) => failwith "cannot match on a hole"
(, hole) => failwith "cannot match on a hole"
(var) => failwith "cannot match on a var"
(leaf i,leaf j) => if i = j then S else []
(node(s,el,e2),node(s',el',e2'» =>
if s=s' then fullmatch e2 e2' (fullmatch el el' S) else []

, yar (x,[]» => map_add_subst (x,El) S
, var (X,es» => add_HO subst X (match El es S)

=> [])

16

;

The extra case calls match using the current subexpression as the matched expression
and the context list as the matching expressions, in the environment of the current valid
substitutions. This will generate a list of contexts and substitutions. It is the contexts which
form the expressions to be assigned to the higher-order variable x. Consequently, the function
adcLHO_substis needed which adds the assignment of Xto each of the substitutions, checking
whether any clashes of higher-order variables occurs.

(*
val add HO subst = fn string -> (Context * Substitution) list

-> Substitution list)
*)
fun add HO subst X «e,ms) ::rc) = •

map_add_subst (X,c) [ms] @ add HO subst X rc
add HO subst [] = []

When a higher-order match is made, there is a set of valid assignments produced, each
with their own associated substitution. add_HO_substpasses across that list and inserts
the maplet formed by the higher-order variable and the new term, and inserts it into the
associated substitution using the previously defined mapcadd. subst function, which checks
to see if the higher-order variable has already been assigned to something different (which
could happen). The function then returns a list of these modified substitutions, with the
failures omitted.

7 Generalisation to the Mural Syntax

We have considered the implementation of this matching algorithm on binary trees. In the
full Mural system, it is used on a much larger syntax. However, the algorithm generalises in
the obvious manner for the generalised tree syntax; more cases are required for the pattern
matching.
One technical point which is worth mentioning here is that in Mural, we do not always
wish to produce matches for all higher-order variables. In the case where we are proving
general derived inference rules for the logic, rather than theorems of the logic, we wish the
meta-variables to be parameters to the proof and remain uninstantiated. For example, if we
define 1\ using V and -, .

r::-:;::;, -, (-, A V -, B)
~

We may wish to derive the normal x-introduction rule.

It\-intro I AA~BB

17

During the proof of this rule from the other we do not wish meta-variables A and B to be
amenable to instantiation. We thus need to have a mechanism for freezing meta-variables in
order to make them immune from the matching.
The matching algorithm was successfully extended to full Mural syntax and has been im
plemented in Smalltalk-80 [3]2. The translation of ML to Smalltalk80 was straightforward.
Higher-order functions can be simulated in Smalltalk80 by the use of passing blocks as
messages between objects which can be executed on arrival.

Its incorporation removed an aggravating bottleneck in the systems performance. The pattern
matching is now acceptably fast on the size of example that generally arises in the application
area.

8 Conclusions

The methodology used for this exercise was not the classical "waterfall" model of specifi
cation, refinement and implementation. Rather, we experimented with implementations at
the same time as we developed our understanding of the problem. Development of the final
versions of the specification and implementation went hand in hand.

The analysis of the problem through successive simplifications proved to be of great help
in deepening our understanding of it. By firstly considering only the simplest expressions
that exhibited the problem and then considering successively restricted special cases of the
matching, we found that the part of the implementation which we anticipated would be the
most difficult, that of handling the higher-order case, proved to be very simple once the
correct framework had been set up.

References

[1] lC.Bicarregui and B Ritchie. Providing Support for the Formal Development of Soft
ware. Proceedings of the First International Conference on Systems Development En
vironments and Factories.1989. (ed. H. Weber) Pitman (1990).

[2] P. Burton. Transformational Derivation of an Algorithm for Higher Order Matching
Department of Computer Science Report No. 484, Queen Mary and Westfield Col
lege,London (1990).

[3] A. Goldberg, D.Robson. Smalltalk 80, the language and its implementation Addison
Wesley, 1985.

[4] M. Gordon, A. Milner, C.P.Wadsworth. Edinburgh LCF LNCS 78, Springer Verlag,
1979.

[5] R.Harper, R.Milner, M.Toftes. The Definition of Standard ML Version 2. University of
Edinburgh, LFCS Report ECS·LFCS·88·62 (1988).

2We acknowledge the work of Bob Fields of Manchester University who made this extension, produced the
Smalltalk implementation and integrated it within the Mural system.

lR

[6] G.P.Huet. A UnificationAlgorithmfor Typed A-Calculus. Theoretical Computer Science
1(1975) 27-57.

[7] C.BJones. Systematic Software Development Using VDM (2nd Edition). Prentice Hall
International (1990).

[8] C.B.Jones(ed) Mural, a Formal Development Support System. Submitted for publication
in LNCS series, Springer Verlag.

[9] A.Martelli, U.Montenarl An Efficient Unification Algorithm. ACM Transactions on
Programming Languages and Systems, 4(2), 258-282, (1982).

[10] L.C.Paulson. Natural Deduction as Higher-Order Resolution. J. Logic Programming
1986:3 237-258.

•

19

