
g? Science and Engineering Research Council
o
g Rutherford Appleton Laboratory

Chilton DIDCOT Oxon OXl10QX RAL-93-029r

SGML Tables for the PHIGS Slide Set

RE Thomas

May 1993

SGMLTables
for the

PHIGS Slide Set

RE Thomas

1 May 1993

SGML Tables for the PHIGS Slide Set

1. INTRODUCTION

The paper "SGML in Practice, The PHIGS Slide Set" (RAL-92-071) describes the work
undertaken to convert the text of a large set of slides to make use of the Standard Generalized
Markup Language (SGML). This made it much easier for those in Higher Educational
Institutions (HEis) to understand the semantics of each slide, and thus incorporate selected
parts into existing on-line slide sets without introducing factual errors. The version
described, however, did not attempt to provide markup for the tabular information included in
the slides. Instead, the original tables (in tbl format, part of the Documenter's Workbench 1 tool
set) were retained, with tags inserted before and after each table.

This paper discusses the problems related to tabular information in general, and the
particular tables used in the Slide Set. A suitable Document Type Definition (DTD) fragment
for the Slide Set, which captures the essential semantics, is described.

2. BACKGROUND

Users of SGML have always had problems with the provision of markup for tables, and there
are still discussions at International level on the best way of tackling this. In addition, some of
the decisions taken in the initial work on the Slide Set have introduced problems which need
to be solved if the resulting DTD is to be generally useful. In the context of the Slide Set, it is
important to be able to distinguish those features of the layout which "do not matter" from
those features which are an essential component (ie the table would convey a different meaning
if the feature was altered). Of course, the physical relationship of the data itself is recognised
by everyone as essential.

2.1 General Problems
The main difficulty is to separate the essential semantics of a table from its visual layout. At
one extreme, a table can be considered merely as a rectangular array of data, and everything
else pure presentation. Another, opposite view, says that the whole layout is an important part
of the table and cannot be divorced from the data within. A better view will lie between the
two.

For example, placing a box round a table (ie lines top and bottom, and down both sides)
makes the table stand out, but does not add anything to the way the contents of the table is
perceived. It is thus a form of highlighting, and can be treated as such. Similarly,
positioning the whole table in the centre of a page is another form of highlight (see below).

Unboxed Left-Justified Table
Entry1
Entry4
Entry7

20
30
40

Entry3
Entry6
Entry9

1. Documenter's Workbench is a registered trademark of AT&T in the USA and other countries

- 1-

Boxed Centred Table

Entry1
Entry4
Entry7

20
30
40

Entry3
Entry6
Entry9

On the other hand, puting vertical lines between some columns and not others introduces a
grouping which has semantic relevance. Changing such lines changes the way the data is
interpreted. Thus the position of these lines contains semantic information and must be
captured in any markup scheme which is intended to preserve meaning (compare the two
tables below).

Entry1
Entry4
Entry7

Entry1
Entry4
Entry7

20
30
40

20
30
40

Entry3
Entry6
Entry9

Entry3
Entry6
Entry9

Note that the following discussion and "solution" does not attempt to solve the general
problem. Indeed, it is recognised that there are many forms of table layout which none of
the existing DTDs can handle (eg a table in which a sub-array of elements is enclosed in its
own box, independent of the row and column separators).

2.2 Specific Problems

At the start of the conversion to SGML, it was decided to cut down on the number of tags
generated. Thus a new tag was not defined if an existing tag could produce the same visible
output. It is possible to interpret a particular layout in more than one way: for example, a single
column of numbers might be a "simple list" or a "one-column table". A two-column table
where the first column contains sequential integers might be an "ordered list" (see below).

Entry1
Entry4
Entry7

1 EntryA
2 EntryB
3 EntryC

-2-

In each case, the 'table' interpretation was adopted, without considering whether lists should
be identified explicitly.

The other major problem was the decision to present the table contents in tbl form. There is
an obvious difficulty in providing a suitable interpretation of the table contents for those who
do not know tbl. A better method of presentation is required.

3. ANALYSIS OF TABLES

It is important that the chosen markup is capable of reproducing the existing slide set. It is
therefore necessary to analyse the tables that are currently used to provide guidance on the tags
and attributes needed. However,the tables were created by different authors at different times,
with no attempt at consistency, so the result of the analysis may lead to a need to change the
original source, if a better solution can be found.

As stated earlier, some of the visual aspects of a table serve merely to highlight the table,
rather than contribute to the semantic content. Within the PHIGS slide set, there are three
features which come under this heading: centring of the whole table, putting a box round the
whole table, and selecting a larger font for the whole table. These features are used separately
or together. Since they do not affect the semantics, the method of indication should either be
by use of a "style" attribute on the main table tag, or separate highlight tags which can enclose
the whole table section. This second solution would be in keeping with other highlight tags
which indicate bold or italic phrases. Indeed, in the case of centring and large characters, such
tags could have meaning in contexts other than tables. These features will not be
considered further when identifying the different types of table used, being equally applicable
to all.

Each table appearing in the slide set was classified according to a collection of
distinguishing features. The number of classes was kept to a minimum. Of course, many
different classification schemes are possible, but the list below covered all the examples
available. Apart from the List type, the number of columns in the table is not seen as a class
distinguishing feature.

Lists
No Headings
Single Line Column Headings
Multiline Column Headings
Spanned Headings
Full Spanned Headings and Subheadings
Partial Spanned Headings and Subheadings
Complex

Each will be considered separately and the main markup issues identified.

3.1 Lists

As described in a previous section, it is possible to treat a single column table as a simple

-3-

list, and a two column table whose first column is a sequence of integers as an ordered list. At
present, they are actually treated in the same way as Simple Tables.

3.2 Simple Tables

An examples is given below.

Entryl
Entry2
Entry3

EntryA
EntryB
EntryC

EntryX
EntryY
Entry

These are really arrays of data without headings or separators (horizontal or vertical lines
between rows and columns). They are very common, and the chosen markup should reflect
the simplicity (eg the default settings for attributes should give rise to this class of table).

3.3 Single Line Column Headings

This also appears frequently in the slide set. Vertical separators appear between each column,
and a horizontal separator is used to differentiate between the heading and the data. The
appearance of the vertical separators introduces an additional feature: the relationship of the
data to the column edge. Three types ofalignment are used: all centred, all leftjustified, mixed
justification (see examples below).

Hl H2

Entry1 EntryA
Entry2 EntryB
Entry3 EntryC

Hl H2

Entry1 EntryA
Entry2 EntryB
Entry3 Entryc

Hl H2

Entry1 EntryA
Entry2 Ent1yB
Entry3 Entryc

- 4 -

The vertical alignment certainly changes the look of the table, and the author has been unable
to find an example where such variations in alignment have semantic content. It is usual
to give some indication of the author's layout wishes by indicating alignment as an attribute
(at various levels, from the whole table to an individual cell). Separate alignments for title
and data are common.

3.4 Multiline Column Headings

Two forms of multiline headings are used in the slide set:

Hl H2
Hl.1 H2.1

Entryl EntryA
Entry2 EntryB
Entry3 EntryC

Hl H2
Hl.1 H2.1

Entryl EntryA

Entry2 EntryB

Entry3 EntryC

In the first example, the two lines of heading could equally be combined into one if the
columns were wider (see below), in which case this could be treated as another example of the
previous type (letting the chosen formatter decide whether to split the heading or not).
As an illustration, consider the following (taken from the original Slide Set).

Structure Pick Element
Identifier Position

WKNV 0 2
DESK 0 1
LG 0 3
BLOT 0 1

-5-

Structure Pick Identifier Element Position

WKNV 0 2
DESK 0 1
LG 0 3
BLOT 0 1

It is more usual however, to indicate multiple rows explicitly (by tag): either as a set of heading
rows or as heading and subheading.

The second example includes row separators. Used regularly in this way, they do not provide
any additional semantic information, and could be treated as an attribute (eg on a row). Some
systems however use an empty tag to represent the separator explicitly.

3.5 Spanned Headings

There is one case of a table which has a single line heading spanning the whole width of the
table (not confined to a particular column). Its alignment is specified in relation to the full
table.

Headl

Entryl
Entry2
Entry3

EntryA
EntryB
EntryC

It is possible to consider this as a special case of either of the next two classes (full or partial
spanned headings with subheadings). On the other hand, it may be more appropriate to
consider such a full-width heading as being associated with the table as a whole rather than with
a collection of columns. This introduces either the idea of a separate table title (with possibly
distinct tags) or a caption (which commonly appears as a form of labelling device for the
table, outside any structure such as a containing box). The current slide set does not contain
any other example of a specific caption.

To date, this class has been treated as a special case of later classes. The span does have
semantic significance (changing the span would change the meaning). Several different
methods of indicating the size of the span have been tried in various DTDs (see later).

3.6Full Spanned Headings and Subheadings

The more usual form of spanned heading includes additional lines which do correspond to
particular columns. Examples are given below.

- 6-

Headl
Hl.1 H2.1

Entryl EntryA
Entry2 EntryB
Entry3 Entryc

Headl

Hl.l H2.1 H3.1

Entry1 EntryA EntryX

Entry2 EntryB EntryY

Entry3 Entryc Ent1yZ

In the first example, the spanned heading bears a close relation to the subheading (this relation
is emphasised by the placing of the row separator) and this would seem to be a clear case
where the "heading and subheading" interpretation is appropriate. In the second example
however, the additional row separator between the heading and subheading again raises the
question as to whether a more appropriate interpretation would be to take the spanned heading
as a caption or as a (separate) title. As an illustration, consider the following table (taken
from the original Slide Set) and the two variations.

Polyline primitive created

Linetype Linewidth Colour Polyline
Scale factor Index Index

SOLID 2 1

-7-

Polyline primitive created

Linetype Linewidth Colour Polyline
Scale factor Index Index

SOLID 2 1

Linetype Linewidth Colour Polyline
Scale factor Index Index

SOLID 2 1

Polyline primitive created

Interpreting the first line of the heading as a title would imply a separate tag for this line,
and full header status (as opposed to subheading) for the second. The two elements might
even be at different levels in the structure in DTDs where tags delimit header and body
sections. A title element would appear between the initial table tag and the 'start of header' tag.

3.7 Parial Spanned Headings and Subheadings

Spanned headings can also be used over a subset of the columns, as in the following examples.

Headl Head2
Hl.1 H2.l H3.1 H4.1

Entry1 EntryA EntryX Entrya
Entry2 EntryB EntryY Entryb
Entry3 EntryC Ent1yZ Entryc

- 8 -

Hl Headl

Hl.1 H2.1 H3.1

Entryl EntryA EntryX
Entry2 EntryB EntryY
Entry3 EntryC EntryZ

The first example is straightforward, but demonstrates the need for a method of indicating
which columns should be spanned. Obviously the feature has semantic relevance. It is usual
to indicate the span requirement by means of an attribute, but there are several ways of
indicating the limits. Some systems put these as attribute values directly on the "cell" tag
(ie the tag immediately preceding the actual text). Others use an empty tag to define the
span, and then reference this tag in the cell entry.

The second example is more complex. The chosen tag scheme needs to be able to associate
Hl andHl. l, and Headl with both H2.1 and H3.1. This can be viewed as two lines of title with
a partial row separator, a wide row with a split data cell, or possibly as some form of sub
table construct. However, the additional row separator does not seem to add any semantic
information (compare with the example below):

Hl Headl
Hl.1 H2.1 H3.1

Entryl EntryA EntryX
Entry2 EntryB EntryY
Entry3 Entryc EntryZ

This suggests that the sub-table approach is inappropriate. Treating this as an example of a
wide row introduces a new level of complexity, including possible horizontal alignment and
horizontal spanning.

It is also possible to consider the subheadings as defining a tree structure relationship
between the columns. This suggests that it might be useful to investigate the presentation
of such structures used in other fields. The problem with this approach is that the natural way
for tabular data to be presented is by row: presentation by column leads to very long, thin
source texts! It would not be helpful to have two orthogonal paradigms for the
descriptions of headings and data. Consequently, this approach has not been adopted.

-9-

3,8 Complex

Finally, there is one table form which does not fit into the previous categories (only one
example of this appears in the set).

Entry1

Entry2

Entry3

Ent ryA EntryX
EntryB EntryY
Ent ryC Entry

EntryA EntryX
EntryB EntryY
EntryC Entry

EntryA EntryX
EntryB EntryY
EntryC EntryZ

This is the only case where row separators appear in the data in an irregular pattern. This
pattern is an integral part of the table. It would be possible to tag this example by indicating
that two of the rows should be followed by row separators, but this does not really capture
the semantic content of the construct.

Providing an adequate interpretation, however, is difficult. It might be interpreted as a
sequence of tables, where the three entities separated by the horizontal lines are considered
separate. This would remove any connection between the contents of these tables, and does
not offer a satisfactory solution. The alternative is to consider this to be a table where an entry
in an individual cell is notjust a single data item, but a construct. Thus the table in the example
is interpreted as having three rows and two columns, with the cells in the second column
being either ordered lists or sub-tables (depending on the form and values ofEntryA, EntryB,
EntryC). The row separators now make a regular pattern. This interpretation would allow a
formatter to display the construct as follows (items in the first column centred in each row):

Entry1

Entry2

Entry3

EntryA EntryX
EntryB EntryY
Entry EntryZ

Ent1ryA EntryX
EntryB EntryY
EntryC EntryZ

EntryA EntryX
Ent1yB EntryY
Entryc EntryZ

This could alter the meaning conveyed in some cirumstances, however. Consider for example
the case where the separate sections represent quarterly data, and the entries in the first column

- 10-

are the names of the first month of each quarter. The horizontal alignment would then be
important.

3.9 Summary

The intention of this analysis is to identify the semantic features which are used within the slide
set, so that the selected SGML definitions will correctly convey the meaning, as well as
allowing a formatter to reproduce the layout of the original. Considering the examples above,
the following features need to be addressed:

Lists (separate type or form of table);
Column headings identified (distinct from table data);
Multi-line headings;
Captions or Titles (needed or not);
Spanned headings (whole or in part);
Complex entries;
Row and column separators as attributes;
Heading and data alignment within columns;
Row spanning and alignment (needed or not);
Box, centring and character size as table attributes.

4. THE SOLUTION

There are a number of examples of published DTDs which have included markup for tables.
It therefore seems sensible to consider whether any of these might provide a suitable base for
use in the slide set (rather than defining another set of tags from scratch). Appendix 1 provides
brief descriptions of the following (in alphabetical order), together (where appropriate) with
example markup:

Air Transport Association (ATA);
Association of American Publishers (AAP);
Addison-Wesley;
DocBook (HaL and O'Reilley);
Exoterica (ECT);
ISO/IEC TR 9573-11;
MIL-M-28001A;
SoftQuad;
Text Encoding Initiative (TEI).

Following this analysis, it was decided, as far as possible, to select a subset of an existing
table markup scheme, and apply that to the tables in the slide set. This meant that the basic
characteristics of the tables had to be handled by the DTD fragment. One of these
characteristics was the use of headings which spanned more than one column, and so any
DTD fragment without spans was discarded (DocBook and MIL-M-28001). Another
characteristic concerned the centring of the whole table and the character sizes within it
None of the fragments included markup features to handle this, although the "tabstyle" attribute
in MIL-M-28001A could fulfil this role.

-11-

The other deciding factor concerned the choice of translator for the SGML. The system used
was Marklt, from Serna, running on a SUN. The translation system (an extension of the
LINK section) uses fairly simple constructs. In particular, the only way it could handle token
lists (such as produced by NMTOKENS or NUMBERS attribute types) was to identify
whether a specific token was present or not. A string of symbols whose order was important,
and where the same symbol could occur more than once, could not be interpreted. This
effectively excluded all the OTO fragments apart from Addison-Wesley, MIL-M-28001A and
the SoftQuad set.

Eventually, MIL-M-28001A was selected. The Addison-Wesley set does not have sufficient
capability to provide the desired alignment information, although its choice of tags does
provide one of the more readable solutions. The SoftQuad fragment concentrates on
layout almost exclusively (creating a box around the table is a complex operation involving
the specification of individual sides at different points in the table).

The points raised at the end the last chapter are considered below. The decisions taken are
based on the premise that, where applicable, the simplest alternative should be selected.

a) Lists.

In the interests of simplicity, it was decided to treat possible lists as examples of tables,
and not create a new set of elements.

b) Column Head Identification and Multiline Headings.

This is a feature of almost every DTD (including the MIL set).

c) Captions.

It was decided not to identify separate captions, since this did not appear to be needed
in the current set of slides, where all the spanned titles can be considered headings. This
means that the title element in the MIL set is not required.

d) Spanned Headings.

This is a feature of the MIL set.

e) Complex Tables.

After much discussion, it was decided to use the existing features of the MIL set to
construct tables with irregular separators. The result of this decision can be seen in the
example in Appendix 3. This does not really address the issue in a satisfactory way, since
the true semantics of the table are not properly identified. However, as stated earlier,
only one example of this type of table appears. Any improved solution would involve
the creation of several new elements, and increase the complexity of the
translation. For these reasons, the simple solution was adopted.

- 12-

f) Row/Column Separator Attributes and Column Alignment.

This is a feature of the MIL set.

g) Row Alignment.

Although this feature is available in the MIL set, it was decided that it was not required.

h) Box, Centring, Character Size.

While there was some merit in considering the use of tags to identify highlighting,
the existence of a "tabstyle" attribute in the MIL set led to its adoption as the
solution. The added generality of the separate tag solution was not needed in the
current set of slides.

The decisions recorded above meant that existing facilities within the MIL set could be
removed. The resulting DTD fragment appears in Appendix 2, together with details of the
main changes.

5. TRANSLATION DIFFICULTIES

Problems with the available translator have already been mentioned (inability to handle
token lists satisfactorily). In addition, there were other language features missing which
made the implementation of the translator a very error-prone exercise. Chief among these were
the lack of brackets and any form of loop construct. The first meant that, when wishing to
choose between alternative sequences of commands, it was necessary to include the
conditional statement with every single line. The second meant that the code could not cope
with simply identifying the number of columns in the table from the "cols" attribute. Instead,
an assumption had to be made as to the maximum number of columns which would

be handled, and all code which required repetition for each column had to be written out
explicitly for each. At the end of each section, the current column was tested against the
maximum, and a flag set when the maximum was reached. The remaining code sections
could be skipped by preceding each line with a test of this flag.

The resulting translation code is therefore long and almost unreadable (the way in which
the LINK section was extended to provide translation facilities meant that the code cannot be
commented). It is therefore not included in this paper. If this activity is to be repeated, it will
be advisable to design a meta-language with the necessary constructs and generate the
translation code by program.

6. SUMMARY

This paper has described the process of document analysis for a specific purpose, and set out
the solution adopted. It has proved necessary in practice to accept several compromises,
which have detracted from the ideal goal of presenting "pure" semantics. The variety of
different ways of marking tables as exhibited by the examples, emphasises the fact that there
is no consensus yet on solving the general problem. All that can be said in defence of the
solution chosen is that it works.

-13-

Finally, it is worth commenting on the use of short references in tables. SGML has a feature
whereby a DTD can define selected non-alphanumeric characters to represent tags. The
Addison-Wesley DTD defines"@" to represent the start of a row, and "I" to separate the data
cells within the row. Other schemes have used the TAB character as cell separator, thus
giving the table some visual structure even when tagged. However, this feature only works
if there is no requirement to specify attributes on the element. The examples show that using
the MIL set as a basis leads to frequent use of attributes, and a table which has a mixture of
short references and full elements can be difficult to decipher. It was therefore decided not
to include short references in the DID.

- 14-

0

APPENDIX 1

Other DTD Examples

This is a briefdescription ofvarious published DTDs known to the author which have included
markup for tables. Where appropriate, example markup for the table below is included. The
descriptions are not meant to be comprehensive. For example, not all the attributes and
elements are described. The intention is to give enough information to provide an idea of the
underlying table model, sufficient to make the markup intelligible. Also, the author of
this paper may have misinterpreted some of the features (it was not possible to gain access
to comprehensive manuals in all cases).

The selected table is one of those used in the "Analysis of Tables" chapter.

Hl Headl
Hl.l H2.1 H3.1

Entryl EntryA EntryX
Entry2 EntryB EntryY
Entry3 EntryC Entry2

It was chosen to exhibit sufficient complexity for adequate comparison. Examples are
simplified by the omission of end tags where possible.

1. Air Transport Association (ATA)

The ATA have published a DID which adopts the MIL-M-28001A standard for tables. These
will be described later.

2. Association of American Publishers (AAP)

The AAP has produced a DTD for Electronic Manuscript Preparation. This DTD
distinguishes Simple Tables from Complex Tables, and has a completely different markup set
for each (even the initial element is different). Simple Tables (tbl) have a number and title
(which span the whole table), followed by a table body (tby) which includes both column
headings (th) and data (row), with an optional Source (src) entry at the bottom of the table
spanning the whole width (designed for author information). The first element in each row
can be designated (by separate tag) as a stub element (which means that it is a label for the row
rather than genuinely part of the row data). The number ofcolumns is inferred from the number
of column header tags appearing, and there is no method of allowing these headings to span
more than one column. Column and row separators are not specified explicitly.

The complex table (ctbl) provides much greater flexibility. The table structure is: Table Head,
Table Body, Table Foot. Attributes are used to set the styles for column and row separators,
and also alignment of headers and data (both within a column and within a row). Use is made

-15-

of the NMTOKENS attribute type, which accepts a string of tokens separated by spaces. Each
token refers to an individual column or row.

The Table Head (cthd) contains the table number and title, but also includes the Source
information. Column headings and subheadings can be placed here. The defaults for
separators and alignments can be changed. The Table Body (ctby) contains rows which either
have subheadings or data elements (cte). Four different styles of stub are available for the first
cell in a row. Rows of headings can appear between rows of data. Alignment can be
varied by row or by individual data cell (using attributes). Headings and data can span
columns (start and end column numbers are supplied as separate attributes) and also rows.
Complex data structures can occur in a cell, and tables may be nested. The flexibility of
the above means that the same presentation can be achieved by a variety of different markup
schemes (for example, the column headings could be placed within the cthd or ctby
elements).

The example table could be tagged as follows:

<ctbl rs="O s 1 s 2 s F s" cs="0 s 1 s 2 s F s"
ca="1 l 2c 3 c">

<cthd>
<Cthr><cth rb=l re=2>Hl Hl.1

<cth rb=l cb=2 ce=3>Head2
<cthr><ctsh cb=2>H3.1

<ctsh>H3.2
<ctby>
<ctr><cte>Entryl<cte>EntryA<cte>Entry
<ctr><cte>Entry2<cte>EntryB<cte>Entry¥
<ctr><cte>Entry3<cte>EntryC<cte>EntryZ
</ctbl>

3. Addison-Wesley

In his book "SGML: An Author's Guide to the Standard Generalized Markup Language",
published by Addison-Wesley, Martin Bryan describes the table markup used for the
structures which appear in the book. The number of columns in a table is specified as an
attribute on the table element. Within the table, there is the ability to provide a table number
(nt), a title (ht), column headings (he), a table body (bt) and a table foot (ft). The title appears
outside the normal table structure (cf caption).

The he elements can refer to one or more columns (using a "cols" attribute to give the
number of columns spanned). Each subsequent he element will cover one or more columns
beside the set specified so far (rather than identifying separate rows). Within the element, each
heading is tagged as a cell item (c), which can take a "straddle" attribute specifying how
many columns the cell will span (which must fit within the defined he span). It is also possible
to define rows within cells (r) to provide some substructure. The actual presentation of the
heading is left to the formatter, so there is no means of specifying alignments, nor row or
column separators. In the book, horizontal separators appearjust before the bt element and also
whenever the r element appears in an he section. Vertical separators are inserted at each use

- 16 -

of the he element. Text is leftjustified unless it spans more than one column (when it is centred
in the span). The spanning information is relative to the current position, rather than
specified by absolute column number.

In the body of the table, the same row and column elements are used to tag the data (the
SGML structure ensures they will be interpreted correctly).

The lack of alignment attribute means that it is only possible to produce a "close match".

<table cols=3>
<hc><c>Hl H1.1
<hc cols=2><c straddle=2>Head2

<r><c>H3.1<0>H3.2</hc>
<tb>
<r><c>Entryl<c>EntryA<c>EntryX
<r><c>Entry2<c>EntryB<c>EntryY
<r><c>Entry3<c>EntryC<c>EntryZ
</table>

4. DocBook

This DTD has been written by HaL Computer Systems Inc and O'Reilly and Associates, Inc.
The basic structure is: Title (optional), TableSpec, TableColHead, TableRow. Details of the
number of columns appears in the content of the TableSpec, rather than as an attribute.
TableColHead elements define the (possibly multiline) column headings, and TableRow
elements define the each data row. Both consist of TableCell elements which identify the
actual information. The only attribute used is an identifier for the whole table. No spanned
headings appear (apart from the use of the title element to give a single line full span), and
there is no reference to column or row separators. Tables may not be nested.

5. Exoterica Complex Tables

Exoterica have produced a set of elements for table markup, called the Complex Table set
(ECT). A table (tbl) consists of an optional title (t.ti) followed by a header section (t.head) and
a data section (t.body). Notes and Source information can follow the table. The title is intended
to be displayed outside the main table structure (cf caption).

The number of columns in the table is given by a mandatory attribute "cw" on the tbl element.
This uses the NUMBERS attribute type, with a number for each column. This number is used
as the relative column width, as well as indicating the number of entries. Further attributes
define the overall settings for horizontal and vertical separators, and alignments. The
information is supplied as a set of tokens using the NMTOKENS attribute type. The tokens
are read in pairs: the first item in the pair either indicates a specific row or column by number,
or by feature (eg separator between head and body, right hand side of surrounding box,
default settings for all rows/columns not explicitly mentioned). A surrounding box can be
specified by the individual separator components (top, bottom, sides) or by a "box" attribute.
Other attributes specify format information such as overall table width.

- 17-

Both t.head and t.body have the same substructure, consisting of a set of rows (t.row) with
individual items in each cell (t.col). Separators and alignment can be set for each part, column
separators can be set for each row, and individual row separators specified for each row.
Individual alignment can be set for each cell.

A cell can span more than one column. The "span" attribute gives the number of columns
spanned. The span will start from the current column position, so it may be necessary to insert
empty t.col elements to reach the correct starting place.

It is possible to indicate a row heading level (4 levels), which identifies the first cell as
a "stub". In addition, rows can be flagged as "organisational", either as the first row of a group,
or as a summary row (the last row of a group).

Tables may be nested within a cell.

The example table could be tagged as follows:

<tbl cw="1 1 1" rs="0 b H b A k F b"
cs="A b" ha='1 L A c" >

<t.head>
<t.row><t.col>Hl Hl.1

<t.col span=2>
<tbl cw="1 1" rs="A b" cs="A b" ha="A c">
<t.body><t.row><t.col span=2> Headl

<t.row><t.col>H2.1
<t.col>H3.1

</t.body>
</tbl>

<t.body>
<t.row><t.col>Entryl<t.col>EntryA<t.col>EntryX
<t.row><t.col>Entry2<t.col>EntryB<t.col>EntryY
<t.row><t.col>Entry3<t.col>EntryC<t.col>Entry'Z
</t.body>
</tbl>

6. ISO/IEC TR 9573-11

This DTD is part of the ISO Central Secretariat SGML Application, written by Anders
Berglund, and has been produced by ISO for use in the production of most of the
International Standards Documents, including working drafts and technical reports. It
includes features which have been added to permit other standardization bodies to make use of
it.

The table (tab) consists of an optional title and description, followed by the main part
(tabmat) and possibly following paragraphs. Attributes include layout details such as
alignment within column or page and placement relative to the surrounding text. It is also
possible to define the table type (eg chart or form). The number of columns required is not
requested explicitly, but has to be inferred from the information provided.

- 18-

Tabmat consist of three parts: tabhead, tabfoot and tabbody. The first two are optional.
Attributes define the border and default settings for other attributes used in sub-elements. The
border is defined by a string of between one and four characters, separated by spaces, each
of which identifies one of the four sides. A complete frame is therefore "T B L R". Similar
values are used to define borders for individual rows and cells. Thus the same visual layout
can be obtained from many

different settings. The width of a column can be defined by a character string giving a template
for each column.

Only one row (arow) is allowed in the heading, whereas the body can have many rows.
However, subheadings (and complex substructures within the table) are handled by three
attributes: "gridx", "gridy" and "arrange". The method used is complicated to describe, but
(briefly) splits a row into subcells, whose relative number and size are specified with "gridx"
and "gridy". "arrange" then indicates the manner in which the subcells are grouped. Spans
can be handled by this mechanism (see example).

Horizontal and vertical alignment within cells can be specified (again by a CDATA character
string). Four header levels are available for tabhead. Clles can be given a domain attribute
to indicate such things as subtitles and row headers.

The example table could be tagged as follows:

<tab align=center type=table>
<tabmat trules="T B L R"

crules="R"
caligns="LC C" >

<tabhead>
<arow gridx="+ " gridy="k " arrange="1 2 2 / 3 4 5"

caligns="LC / LC C" >
<c>Hl<c crules="B">Head1<c>H1.1<c>H2.1<0>H3.1
<tabbody>
<arow><c>Entryl<c>EntryA<c>EntryX
<arow><c>Entry2<c>EntryB<c>Entry¥
<arow><c>Entry3<c>EntryC<c>EntryZ
</tab>

7. MIL-M-28001A

The MIL set of DTDs was developed for the US Department of Defence Computer-aided
Acquisition and Logistic Support (CALS) initiative. The original MIL-M-28001 set had very
rudimentary table facilities, with no spanning capability. The revised set is able to handle much
more complex structures.

The table (table) consists of an optional title (title) and a set of table groups (tgroup). The
tgroup element has an attribute giving the number of columns in that particular group, whose
substructure consists of a set of column specifiers (colspec), a specification of any spans
required (spanspec), a head (thead), foot (tfoot) and body (tbody). Colspec elements may

-19-

appear in the head to change settings such as heading alignment. Apart from that, both
head and body consist of a series ofrows (row) with individual cells (entry). One level of table
nesting is provided by replacing the entry element with entrytbl, which has the same structure
as the table element, but without permitting another entrytbl element to appear.

Attributes on the table element indicate whether a surrounding frame is required, and whether
horizontal and vertical separators will be inserted by default. In addition, there is a "tabstyle"
attribute which is intended to refer to a set of table styles defined for CALS. These styles
convey further format details.

The colspec element defines the column alignment, the vertical separator to the right of the
numbered column and the default row separators within the column. It can also associate a
name with the column, which is used in specifying the span. Spanspec refers to the start and
end column by name rather than number, and gives a name to the span. This name can be
referenced by the entry element Separators and alignment can be defined for each span. The
horizontal separator below a particular row, and the vertical separator to the right of each
cell, can be set individually with attributes on the row and entry elements respectively. Each
entry can have individual alignments (both vertical and horizontal).

The example table could be tagged as follows:

<table frame="all">
<tgroup cols="3" colsep="1">
<colspec colnum="2" colname="c2" align="center">
<colspec colnum="3" colname="c3" align="center">
<spanspec namest="c2" nameend="c3" align="center"

spanname="c2-3">
<thead>
<row><entry>Hl

<entry rowsep="l" spanname="c2-3">Headl
<row rowsep="1"><entry>H1.1

<entry>H2.1
<entry>H3.1

<tbody>
<row><entry>Entryl<entry>EntryA<entry>EntryX
<row><entry>Entry2<entry>EntryB<entry>Entry¥
<row><entry>Entry3<entry>EntryC<entry>Entry7
</table>

8. SoftQuad

SoftQuad sell SGML editors, which are capable of working with user supplied DTDs. The
latest version includes the ability to handle tables. In order to cope with mapping user-supplied
DTDs, SoftQuad have designed a Canonical Form, and all user DTDs are mapped into this.
The intention is to be able to provide a visual presentation of the layout, so the Form
concentrates on syntax rather than semantics.

There is no single table element. Instead, there are three separate elements: Table Head

- 20-

(ThlHead), Table Body (ThlBody) and Table Foot (TblFoot). These can be used jointly or
separately in any combination to create the desired form. Each element has exactly the same
internal structure, so headings and data are only distinguished by convention (headings
would be expected in the TblHead section for example). Attributes on these top level
headings specify the physical size which the section will occupy on the page.

Within one of these elements, there are two sections: column definitions (ThlCDfs) and rows
(ThlRows). Within TblCDfs, there is one TblCDef element for each column. Attributes
specify the default settings for alignments and vertical separators, with a specific attribute
(TopSep) to define the top edge of the surrounding box. These same attributes can be set
separately for each column. Similarly, within TblRows there will be one TblRow element for
each row, with the individual data cells tagged by TblCell elements. Default row alignments
and horizontal separators can be set, with a special tag for the left-hand side of the
surrounding box. These settings can be overridden for each row and for each cell. In
addition, cell data can span several rows or columns (absolute start and end points specified as
attributes).

Once again, the same presentation can be generated in many ways.

<TblHead>
<TblCDfs ColSep="VSingle" TopSep="HSingle">
<TblCDef>
<TblCDef HAlign="Center">
<TblCDef HAlign="Center">
<TblRows RowSep="HSingle" LeftSep="VSingle">
<TblRow><TblCell RowSep="HNone">Hl

<TblCell ColStart=2 ColSpan=2>Head1
<Tb1Row><TblCell>Hl.1<Tb1cell>H2.1<Tb1Cell>H3.1
<Tb1Body>
<TblCDfs ColSep="VSingle">
<TblCDef>
<TblCDef HAlign="Center">
<TblCDef HAlign="Center">
<TblRows LeftSep="VSingle">
<Tb1Row><Tb1Cell>Entry1<TblCell>EntryA<Tblcell>EntryX
<Tb1Row><TblCell>Entry2<TblCell>EntryB<TblCell>Entry
<TblRow RowSep="HSingle">

<Tb1Cell>Ent1y3<Tb1Cell>Entryc<Tb1Cell>Entry
</TblBody>

9. The Text Encoding Intiative (TEI)

TEI provides two elements (table and ext.table) with no further substructure. Instead, it
is assumed that a NOTATION statement will provide the information on the data content.
This is equivalent to the way in which tables were handled in the first version of the slide set
DTD (and is more correct).

- 21-

APPENDIX2
Fragment of DID defining table element.

<<! -- Based on the MIL-M-28001A table specification>

<!ELEMENT table - 0 (tgroup) -(table) >

<!ENTITY% yesorno "NUMBER"
setting from body of MIL-M-28001A -->

<!ATTLIST table tabstyle NMTOKEN #IMPLIED
frame (alllnone) "none" >

<!ELEMENT tgroup - O (colspec*,spanspec*,thead?,tbody) >

<!ATTLIST tgroup cols
colsep
rowsep
align

NUMBER #REQUIRED
yesorno; "9
yesorno; "0"
(left I centre I number) "left" >

<!ELEMENT colspec - O EMPTY >

NUMBER
NMTOKEN

%yesorno;
%yesorno;

#IMPLIED
#IMPLIED

#IMPLIED
#IMPLIED >

<!ATTLIST colspec colnum
colname
align
colwidth
colsep
rowsep

(leftlcentrelnumber) #IMPLIED
CDATA #IMPLIED

<!ELEMENT spanspec - O EMPTY >

<!ATTLIST spanspec namest NMTOKEN #REQUIRED
nameend NMTOKEN #REQUIRED
align (leftlcentrelnumber) #IMPLIED
colsep %yesorno; #IMPLIED
rowsep %yesorno; #IMPLIED
spanname NMTOKEN #REQUIRED >

<!ELEMENT thead - 0 (colspec*,row+) >

<!ELEMENT tbody O O (row+)

<!ELEMENT row O O (entry+)

<!ATTLIST row rowsep &yesorno;

<!ELEMENT entry O O (#PCDATA)

- 22-

>

>

>

#IMPLIED >

<!ATTLIST entry spanname
colsep
rowsep
align

NMTOKEN
%yesorno;
%yesorno;
(leftlcentrelnumber)

#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED >

<!-- +++ -- >

<!-- short references for table. -->

<!ENTITY strow STARTTAG "row" >

<!ENTITY endrow ENDTAG "row" >

<!ENTITY sthead STARTTAG "thead" >

<!ENTITY stbody STARTTAG "tbody" >

<!ENTITY stentry STARTTAG "entry" >

<! SHORTREF tabmap nu t sthead
"#" stbody >

<!USEMAP tabmap table >

<!SHORTREF tabhmap II { II strow
II } II endrow
"#}" stbody
"&#TAB;" stentry >

<!USEMAP tabhmap thead >

<!SHORTREF tabbmap II { II strow
II } II endrow
"&#TAB; II stentry >

<!USEMAP tabbmap tbody >

<!-- +++ -- >

<!-- Public Entity Insertions for access to special characters
used in the tables: "less than or equal", "greater than
or equal", "unfilled square", "filled bullet". -->

- 23 -

<!ENTITY% ISOtech PUBLIC
"ISO 8879-1986//ENTITIES General Technical//EN">

<!ENTITY % ISOpub PUBLIC
"ISO 8879-1986//ENTITIES Publishing//EN">

%ISOtech;

%ISOpub;

The main changes to MIL-M-28001A are listed below.

a) The TITLE and SHORTITLE elements are omitted.

b) Where possible, element start and end tags are made optional (the original has all
start tags mandatory).

c) Only one TGROUP element is allowed. In fact, this element could be considered
redundant, and the attributes merged with those of table, but, in the interests of
compatibility, the element is retained.

d) The "tabstyle" and "frame" attributes for table are retained. As stated earlier, local
values were defined for "tabstyle" to specify centring and large characters. The
single token type (NMTOKEN) was retained for "tabstyle". The values of the
"frame" attribute are limited to "all" or "none".

e) Table footers are not required. The TFOOT element is therefore omitted.

f) The "cols", "colsep", "rowsep" and "align" attributes are retained for TGROUP.

g) The values of the "align" attribute are limited to "left", "centre" or "number". The
last two settings are additions to the base set. The US spelling "center" is removed.

h) The "char", "charoff", "valign" and security related attributes are removed from all
elements.

i) No embedded tables are required, so the ENTRYTBL element is omitted.

j) Each ENTRY element contains no further substructure.

k) The "morerows" and "rotate" attributes are omitted from the ENTRY element.

- 24-

APPENDIX3

Examples of Tagged Tables
(taken from chapter 3)

Simple Table

<table tabstyle="centre" >
<tgroup cols="3" >
<tbody>
<row>Entryl<entry>EntryA<entry>EntryX
<row>Entry2<entry>EntryB<entry>EntryY
<row>Entry3<entry>EntryC<entry>Entry'Z
</table>

Single Line Column Heading

<table tabstyle="centre" frame="all" >
<tgroup cols="2" colsep="l">
<colspec colnum="l" align="centre" >
<colspec colnum="2" align="centre" >
<thead>
<row rowsep="1">Hl<entry>H2
<tbody>
<row>Entryl<entry>EntryA
<row>Entry2<entry>EntryB
<row>Entry3<entry>EntryC
</table>

Multiline Column Heading

<table tabstyle="centre" frame="all" >
<tgroup cols="2" colsep="1">
<colspec colnum="l" align="centre" >
<colspec colnum="2" align="centre" >
<thead>
<row>Hl<entry>H2
<row rowsep="1">H1.1<entry>H2.1
<tbody>
<row>Entryl<entry>EntryA
<row>Entry2<entry>EntryB
<row>Entry3<entry>EntryC
</table>

- 25 -

Spanned Heading

<table tabstyle="ceritre" >
<tgroup cols="2" >
<colspec colnum="l" colnarne="cl" >
<colspec colnum="2" colnarne="c2" >
<spanspec narnest="cl" narneend="c2" rowsep="l" align="centre"

spannarne="cl-2" >
<thead>
<row><entry spanname="cl-2">Headl
<tbody>
<row>Entryl<entry>EntryA
<row>Entry2<entry>EntryB
<row>Entry3<entry>EntryC
</table>

Full Spanned Heading and Subheading

<table tabstyle="centre" frarne="all" >
<tgroup cols="3" rowsep="1" colsep="l">
<colspec colnurn="l" colnarne="cl" >
<colspec colnurn="2" align="centre" >
<colspec colnurn="3" colnarne="c3" align="centre" >
<spanspec narnest="cl" narneend="c3" align="centre"

spannarne="cl-3" >
<thead>
<row><entry spannarne="cl-3">Headl
<row>H1.1<entry>H2.1<entry>H3.1
<tbody>
<row>Entryl<entry>EntryA<entry>EntryX
<row>Entry2<entry>EntryB<entry>EntryY
<row>Entry3<entry>EntryC<entry>Entry
</table>

Partial Spanned Heading and Subheading

<table tabstyle="centre" frarne="all" >
<tgroup cols="3" colsep="l">
<colspec colnum="2" colnarne="c2" align="centre" >
<colspec colnum="3" colname="c3" align="centre" >
<spanspec narnest="c2" narneend="c3" align="centre"

spannarne="c2-3" >
<thead>
<row>Hl<entry rowsep="1" spannarne="c2-3">Headl
<row rowsep="1">H1.1<entry>H2.1<entry>H3.1

- 26-

<tbody>
<row>Entryl<entry>EntryA<entry>EntryX
<row>Entry2<entry>EntryB<entry>EntryY
<row>Entry3<entry>EntryC<entry>EntryZ
</table>

Complex

<table>
<tgroup cols="3">
<tbody>
<row>Entryl<entry>EntryA<entry>EntryX
<row><entry><entry>EntryB<entry>Entry¥
<row rowsep="l" ><entry><entry>EntryC<entry>EntryZ
<row>Entry2<entry>EntryA<entry>EntryX
<row><entry><entry>EntryB<entry>Entry
<row rowsep="l" ><entry><entry>EntryC<entry>EntryZ
<row>Entry3<entry>EntryA<entry>EntryX
<row><entry><entry>EntryB<entry>EntryY
<row><entry><entry>EntryC<entry>EntryZ
</table>

- 27 -

