
~ Science and Engineering Research Council
o$ Rutherford Appleton Laboratory
<e Chilton DIDCOT axon oxn OQX RAL -93-099a:

A Model-Oriented Analysis of a
Communications Protocol
J C Bicarregui

December 1993

--

A Model-Oriented Analysis of
a Communications Protocol

Juan Bicarregui

Abstract

In [BA92], Bruns and Anderson describe a communications protocol in CCS with
value-passing. A data model of the state is given in terms of the type constructors usually
found in model-oriented specification. For the agents described, a series of semaphores
ensure exclusive access to the state, thus the behaviour can be described as a purely
sequential system.

This paper considers some alternative data-models for this system: two abstractions
and two reifications of the original specification are given. In particular, strong invariants
are used to exclude unreachable values from the state space. The example raises some
stylistic questions concerning how much detail, that can be inferred from the invariant,
should be left implicit in postconditions.

VDM is used for the development, and the role of the explicit frames of reference in
the operation definitions is examined in some detail. The interaction between read and
write frames and invariant is studied, as is the manner by which the information in the
frames is propagated during refinement. Also examined, is how the use of these frames can
be extended and how their use can be combined with operation structuring mechanisms
available in other model-oriented methods.

The paper concludes with a discussion of some general questions of methodology
raised by the example.

•

1 Introduction

In [BA92], Bruns and Anderson describe a communications protocol in CCS with value-passing.
A data model for the values is given that is, in effect, a model of the state of the device. This
model is defined in terms of the type constructors usually found in model-oriented specification
but without the use of invariants.

The part of the protocol that is described is a mechanism for manipulating a series of flags
indicating the status of some shared-memory buffers. These flags are used to ensure that there
is no "data-tearing" as multiple processors simultaneously read and write to the buffers. For
the operations that update these flags, semaphores are used to ensure that each operation has
uninterrupted access to the flags. Thus this part of the behaviour can be described as a purely
sequential system.

This paper considers some alternative data-models for the specification (and reification) of these
status flags. In particular, attention is paid to the use of invariants in the data model and frames

1

of reference in the operations definitions, neither of which are available in the data modelling
language of [BA92]. It is argued that these features can playa key role in describing the system
in a "natural" fashion and can thus help to deepen our understanding of the model.

VDM [Jones90] is used for the analysis, though some comment is made on the advantages that
would arise from some of the structuringmechanisms available in Z [Spivey88] orB [Abrial93].
Familiarity with the basic concepts and notation of VDM is assumed.

The remainder of this first section is an informal description of the application and desired
protocol. The second section presents a formal specification of the system at a level of
abstraction similar to the "abstract" description of [BA92]. Motivated by an analysis of the
invariant of that specification, section three describes two further abstractions that can be made.
Section four provides an alternative model of the system that makes it possible to write more
useful framing information about the operations. The fifth section extends the model to the
"improved" protocol of [BA92] and the next considers the possibilities arising from structured
definitions of operations. The last section is a discussion of some of the points arising from the
example and raises some general questions of methodology'.

•

1.1 The Multiprocessor Shared-Memory Information Exchange (MSMIE)

MSMIE, Multiprocessor Shared-Memory Information Exchange, is a protocol that addresses
intra-subsystem communications with

"several features which make it ideally suited to inter-processor communications
in distributed, microprocessor-based nuclear safety systems" [MSMIE].

It has been used in the embedded software of Westinghousenuclear systems designs.

The protocol uses multiple buffering to ensure that no "data-tearing" occurs as seperate pro
cessors communicate via some shared memory. That is, that data is never overwritten by one
process whilst it is being read by another. One important requirement is that neither writing nor
reading processes should have to wait for a buffer to become available, another is that recent
information should be passed, via the buffers, from writers to readers. In the simplification
considered in [BA92] it is assumed that information is being passed from a single "slave" pro
cessor, to several "master" processors. Thus, there are several reading processors, "masters",
but only one writing, "slave", process.
The information exchange is realised by a system with three buffers. Veryroughly, at any time,
one buffer is available for writing, one for reading and the third is either between a write and a
read and hence contains the most recently written information, or between a read and a write
and so is idle.

The status of each buffer is recorded by a flag which can take one of four values:

s - "assigned to slave." This buffer is reserved for writing, it may actually be being written at
the moment or just marked as available for writing.

n - "newest." This buffer has just been written and contains the latest information. It is not
being read at the moment.

1This example development is used as the basis of a comparison of the VDM and B notations in [BicRit93].

2

-
m - "assigned to master." This buffer is being read by one or more processors.

i - "idle." This buffer is idle, not being read or written and not containing the latest data.

The names of the master processors that are currently reading are also stored in the state.

As mentioned earlier, neither the buffers themselves nor the slave and master processors that
actually access the buffers in parallel are modelled here. This analysis concerns only the
operations that modify the buffer status flags. In the system as a whole, these operations are
protected by a system of semaphores which allow each operation uninterupted access to the
state and thus their behaviour is purely sequential.

There are three of these operations:

slave This operation is executed when a write finishes. slave sets the status of the buffer that
was being written to "newest" thus replacing any other buffer with this status.

•

acquire This is executed when a read begins. The new reader name (passed as a parameter) is
added to the set of readers and status flags are updated as appropriate.

release Executed when a read ends, this removes a reader from the set and updates flags as
appropriate.

The details of the behaviour of these operations are quite intricate and their precise description
is left to the formal specification in the following section.

It shouldbe noted however that, as it stands, the protocol could have the undesirableproperty that
information flow from slave to master is be held up indefinitely. This possibility is ruled out in
the original system [MSMIE] via timing constraints whereas [BA92] suggests an improvement
to the protocol (using a fourth buffer) that eliminates the possibility without recourse to timing
arguments. This improved protocol is examined in later sections of this paper.

2 A VDM specification of MSMIE

The state in [BA92] is defined as

"a set of three pairs (a, I) where a is the buffer status, drawn from {i, 5, n, m},
and I is the buffer identification, drawn from {I, 2, 3}. The buffers are given as
a set rather than a tuple to enable pattern matching rules in the description of the
protocol".

The pattern matching rules do indeed give a concise description of the transitions of the system,
in particular, the associative, commutative properties of sets are used to good effect in order to
avoid much repetitive case analysis. However, the present author found that considerable effort
was required to check that the patterns given were exhaustive and that the effects of overlaps
between patterns were sensible. This difficulty is exacerbated by the fact that many of the states
in the model are actually unreachable but no invariant on the state type is given to exclude
them.

3

The specification given here makes an alternative choice of a sequence of three buffers for the
state description. In addition, an invariant is used to exclude unwanted values from the state
type.

2.1 Thestate

Possible values of the status flags are given via an enumerated type; the type of the names of
master (reading) processors is deferred.

types

Status = {s, m, n, i}

MName = token
•

The state is composed of three buffer status flags and a set of the names of the currently reading
masters. The invariant captures the fact that only certain states are reachable by the operations.
It gives restrictions to the possible combinations of status flags, namely that there is always
exactly one buffer assigned to the writing slave; there is at most one currently being read and at
most one with newest data that is not being read; and the set of reader names is empty precisely
when there is no buffer being read. The initial state assigns one buffer to the slave and records
that the other two buffers are idle.

state E of ~~.J vs e o: ~~\J~?
b : Status" It::" ~ ~ q. >V{-

ms : MName-set
inv mk-E(b, ms) b. len b = 3 !\

count(s, b) = l!\
count(m, b) E {a, I} !\
count(n, b) E {a, I} !\
(count (m, b) = ° {:}ms = { })

init mk-E(b, ms) b. b = [s, i, i]!\ ms = {}
end

where!

count :Status x Status" --t N

count(s, ss) b. len (ss I> s)

A validation condition on the state

We observe that only four combinations of buffers are allowed by the invariant:

Vmk-E(b, ms): E· {b(l), b(2), b(3)}m E {{s,i,i}m, [s.l.nj.,, {s.i.rnj.,, {s,n,m}m}

1Here, range restriction is used on sequences, viewing them as maps from natural numbers to elements.

4

where we have used {... }m as a notation for bags (multisets), for example {s.l.l}, is the bag
containing one's' and two 'i's.

Thus the invariant has captured, and brought to the fore, properties that would otherwise have
to be deduced by looking in detail at the definitions of the operations. It makes it possible to
build quickly our intuition of the workings of the specified machine. We know immediately
that there is always one buffer reserved for writing, at most one being read, and at most one
with newest data not being read.

2.2 The Operations

Slave

The firstoperation, slave, is executedwhen awrite completes. It reassigns the statusof the buffer
just written, previously s, to n, thus replacing any other n buffer. It also non-deterministically
chooses another available buffer which is to be the new buffer reserved for writing and assigns
to it status s.

•

slave 0
ext wr b : Status"
pre true
post Vi E {1,2,3}·

"--(b (i) = s :::} b(i) = n) A
"--(b (i) = m :::} b(i) = m)

The postcondition may, at first sight, seem to be to liberal: what should happen to any buffer
that had status n or i? However, in conjunction with the invariant and the frame, it ensures that
no other n buffer remains, that exactly one new S buffer is chosen, and that no new m buffers
are added. Thus for example we can write the following validation property for slave which
can be proved in order to increase confidence in the correctness of the postcondition:

"--b (i) E {n, i} :::} b(i) E {l, s}

Note also that all three implications could have been equivalences without changing the opera
tion.

Acquire

The second operation, acquire, is executed when a read is about to start. It adds the new
reader's name, passed as a parameter, to the record of active readers and reassigns status flags
as necessary.

If there is a buffer currently being read then the new read also begins to read that same buffer
and no status change is required. Otherwise the new read starts on the buffer with newest data,
status n, and reassigns the status of that buffer to m.

5

The operation can only be executed in these two situations and this information is recorded in
the precondition which requires that there is either a status m or status n buffer. The precondition
also records the fact that the operation is only required to function when the new reader is not
already in the set of readers.

Note that, in selecting which buffer is to be read, it is not always possible to choose the buffer
with newest data. This situation occurs when there are currently buffers with both status m
and n, which arises when the data in the n buffer has become available since the start of an
ongoing read, that is, when there has been a slave since an acquire for which there has not
yet been a corresponding release. In this situation, were the new master to begin reading the
n buffer, there would then be two buffers reserved for reading. Consequently, should another
slave now occur, attempting to preserve this new data would leave no buffer being available for
another write to start, thus contradicting one of the fundamental requirements of the protocol:
that processors should never have to wait to gain access to buffers. The invariant is designed
to prevent this possibility, by insisting that there is always one (and precisely one) buffer with
status s.

•

acq (1: MName)
ext wr b : Status"

wr ms : MName-set
prelrtmsA

3i E {I,2,3}· b(i) = n V b(i) = m
post ms = ms U {I} A

Vi E {I,2, 3}·
if b(i) = n A ms = {} then b(i) = m else b(i) = b(i)

It is worth observing that the last line of the postcondition could have been written as

""- ""-if b (i) = n then b(i) E {n, m} else b (i) = b (i)

or simply as

b(i) # n A ms # {} =} b(i) = b(i).

The apparent non-determinism in the alternatives is illusory because the invariant will ensure
that there is no real choice as to the status to assign to any buffer that previously had status n.
However, the longer and apparently stronger postcondition is preferred as the shorter versions
seem to be more cryptic.

Release

The release operation is executed when a reading, master processor finishes its read. The name
of the processor is removed from the set of readers and again, status flags reassigned as required.

If this master is not the last one currently reading, then no change is required to the status flags.
However, if this is the last master currently reading the m buffer, then this buffer must have its

6

-
flag reassigned. There are two possibilities. On the one hand, should there be another buffer
with status n available at this time, that is if a write has been completed since the current "chain
of reads" began on this buffer, then the mbuffer no longer contains the most recent data and so
should now be set to i. On the other hand, if there has been no write since the chain of reads
began, and hence there is no n buffer available, the m buffer contains the most recent data and
its status should be reset to n.

rei (1:MName)
extwr b Status"

wr ms : MName-set
prelEms
postms = ~ - {l} /\

\f i E {I, 2, 3}__
if ms = { } /\ b (i) =m
then b(i) E {n,i} /\ count(n, b) = I....__
elseb(i)= b(i)

•

Again there is some choice as to how much of the information that is deducible from the
invariant should be made explicit in the postcondition. For example the first conjunct of the
'then' clause, b(i) E {n, i},could have been omitted as no other possibilities are permitted by
the invariant, or alternatively, the whole 'then' clause could be replaced by a more explicit form

....__
if:3j E {I,2,3}· b (j) = n then b(i) = i else b(i) = n

It is debatable which gives the clearer specification.

2.3 Discussion

Invariants and postconditions

In this presentation, the invariant has been used to convey quickly an understanding of the
reachable values of the state. In VDM, the state invariant is effectively part of the state typing
information and as such is assumed to be maintained by the operations.

This implicit maintenance of the invariant leads to the choices discussed above of how much
of the information deducible from the invariant should be repeated in a postcondition. There is
often some tension between the most concise form that relies on properties of the invariant for
its correctness, and a longer, but more explicit form, that includes some redundant information.
This choice can be seen as an opportunity to prove the stronger forms from the weaker. Which
form is chosen may make a significantdifference to the complexity of the proofs: the form that
most clearly conveys the information may not be the form that will be most usable in proofs.
Indeed, the stronger form is more likely to be helpful when the specification is being proved
to be a reification of another, and the weaker form when it is itself being reified. By proving
one form from the other, one can move some of the burden of proof that otherwise might have
arisen whenjustifying a data reification into the validation of the single specification. This may

7

well be to some advantage for reasoning in the context of a single specification is likely to be
less complex than reasoning about a pair of specifications.

By contrast, in the B notation, one always has to write operations that imply the preservation
of the invariant. This may encourage a tendancy to describe how the invariant is maintained,
and thus to less abstract specifications. The present example is also considered in [BicRit93]
where it is used as the vehicle for a comparison of the VDM and B notations.

Methodology

This specification has given a fairly algorithmic description of which buffers are assigned to
what status by each operation. This is a good level of abstraction at which to reason about
whole system safetyproperties such as the freshness of the data transferred from slave to masters
which is the focus of [BA92]. Much of the detail of this specification is, however, undesirable
clutter for other purposes and it is interesting to give more "external" views of the system, as is
done in the next section.

•

3 Twomore-abstract specifications

In this sectionwe give two formal abstractions in the above specification. The new specifications
maintain the sameexternal behaviour, however the abstract states areprogressively simpler than
the onejust given. The abstractions arise by ignoring detail in the state model that is unecessary
to capture the external behaviour. Retrieve functions from concrete to abstract states are
also given which are many-to-one, thus demonstrating "implementation-bias" in the concrete
specification.

3.1 A first abstraction: ignoring the identity of buffers

Taking inspiration from the validation condition on the state of the above specification, we can
give a more abstract specification where the identity of buffers is ignored and only the four
possible combinations of buffers are distinguished.
A new enumerated type is given that comprises four tokens, each representing one of the
possible combinations of buffers
types

Statust = {sii, sin, sim, snm}

The state simply records which combination is current and the invariant and initialisation are
the "images under retreival" of the concrete ones
state 171of

bs : Status;
ms : MName-set

inv mk-17l(bs, ms) b.
init mk-E, (bs, ms)
end

ms = {} {:} bs E {sii,sin}
mk-L't (sii, { })

8

-
The operations are similar to those given in the previous specifications, in particular, the
postconditions rely on the same case distinctions.

slave 0
ext wr bs Status}

rd ms MName-set
pre true..___
post (bs E {sii, sin} => bs =sin) /\..___

(bs E {sim,snm} => bs = snm)

acq (1: MName)
ext wr bs : Status}

wr ms : MName-set
pre I ~ ms /\ bs # sii
post ms = ms U {I} /\

if ms = {} then bs = sim else bs = bs

•

rel (1: MName)
ext wr bs : Status}

wr ms : MName-set
pre 1 E ms
post ms = ms - {I} /\

if ms = {} then bs = sin else bs = bs

The retrieve function from the first more concrete specification to this one is simple to define
by cases. As it is usual to give more concrete specifications successively higher numbers we
will from now on call the state of specificationgiven earlier Li.

ret1'J._l : L2 --+ 171
ret1'1._1(mk-L2(b,ms)) D,. cases (count(n, b), count(m, b)) of

(0,0) --+ mk-17l(sii,ms)
(1,0) --+ mk-17t(sin,ms)
(0,1) --+ mk-171(sim,ms)
(1,1) --+ mk-17}(snm, ms)
end

This specification abstracts away from the behaviour of the individual buffers and exhibits a
useful partitioning of the original state space. We can understand much of the behaviour of
MSMIE without concern for the finer detail of the more concrete specification. The specifica
tions also makes it clear that after the initial slave operation the system never returns to the sii
state. This motivates the next abstraction.

9

3.2 A yet more abstract specification

A further abstraction can be obtained by noticing that the distinction between the initial sii state
and the rest of the state space is all that is required to model the external behaviour. Apart
from the precondition of acquire which effectively requires that a slave should occur before
any acquire, the buffer part of the state is entirely redundant. Thus, the place of the buffers can
be taken by a single boolean flag that records whether a slave has ever occurred.
state LQof

b:B
ms : MName-set

inv mk-LQ(b, ms) b. b = false :::} ms = { }
init mk-LQ(b, ms) b. b = false A ms = {}
end
The retrieve function is straightforward.

retrl.0 : 171 -+ LQ
retT).o(mk-El (bs, ms)) b. mk-LQ(bs =F sii, ms)

The operations specifications are also simple:

slave 0
ext wr b : B
pre true
post b = true

acq (I: MName)
ext rd b : B

wr ms : MName-set
pre b =true A 1 fj. ms
post ms = ms U {I}

rel (1:MName)
extwr ms : MName-set
prelEms

post ms = ms - {I}

An alternative state model, equivalent to this, would have comprised of a single component of
the optional type [MName-set]. In this model, nil represents the state before anywrite occurred,
corresponding to the case where b = false and ms = { },and otherwise the state is simply ms.
state LQa of

ms : [MName-set]
init mk-LQa (ms) b. ms = nil
end

10

-
slave 0
ext wr ms : [MName-set]
pre true
post if ms = nil then ms = {} else skip

acq (1:MName)
ext wr ms : [MName-set]
pre ms :f:. nil /\ 1 f}. ms
post ms = ms U {I}

rel (I: MName)
ext wr ms : [MName-set]
pre ms :f:. nil /\ 1 E ms
post ms = ms - {I}

•

3.3 Discussion

Read frames and union types

Describing the state as an optional type is a special case of using a union type for a state
component. In this case, it is tempting to write the externals clause of acq and rel as of the type
without nil, and thus highlight the fact that the system can never return to the initial state. This
introduces the more general possibility of partitioning the state space by the use of union types
for state components in order to bring into the externals information that would otherwise be
part of the postcondition.
In the acquire for 14> we saw that read access to b was required even though b was only
mentioned in the precondition. Clearly an implementation of acquire would not require any
access to this state component. This is our first minor encounter with the dual nature of role of
the read frames in operation definitions which will be discussed at length later. Here the reader
is simply asked to note that, as mentioned above, in the alternative state, Lba, omitting the nil
value from the type when it is mentioned in the externals could side-step the matter.

Methodology

This specification captures the 'external' behaviour of the protocol. For example it shows
that it is always possible to perform a write and, so long as a write has ever occured, it is
always possible to start a new reader and release any existing readers. Such properties are
then preserved by the refinement and so give us the validation of the corresponding property
of the more concrete specifications. This particular validation condition can easily be given
using the closure of the disjunction of the three postconditions: However, a general formalism
to prove such "global" properties concerning system behaviour, perhaps with modal operators
and quantification over "all operations", is not available for VDM.

11

4 An alternative view of MSMIE

The above specifications are based on the state recording the status of each buffer; effectively
the state is a map from buffer names to their status. Returning to the original specification, we
recall that there is always exactly one buffer with status s and at most one with status m or n.
This makes it possible to invert the map and think of the state as mapping from each status to a
buffer.
This leads to a specification that is equivalent to the first one, but which could yield a more
efficient basis for an implementation. This change also makes it possible to specify the read
and write access constraints more precisely.

4.1 Thestate
•

types

BName = {1,2,3}

MName = not-yet-defined

state L3 of
s BName
m [BName]
n [BName]

ms MName-set
inv mk-L3(s, n, m, ms) ~

init mk-L3(s, n, m, ms) ~
end

where

(m = nil {:} ms = {}) 1\ .
nil-or-different([si---m?.~) (:7\
mk-E(1, nil, nil, { }) ~ ~rY"'-<M- a..rwv "'"' fvs v~

nil-or-different : [A]* ~ B

nil-or-different(l) ~ Vi E inds l·l(i) = nil V l(i) r;_ elems (i ~ l)

The retrieve function

The retrieve function is again quite simple:

12

-
retT'J_2:L3 -+ L2
retT'J_2(mk-L3(s, n, m, ms)) b.

let bi.bi, hJ:RName be s.t.
Vi E {1,2,3}·s = i =} b, = s /\

n = i =} b, = n /\
m = i =} b, = m /\
i (/.{s, n, m} =} bi = i

in
mk-L2([bl'~' hJ],ms)

4.2 The Operations

slave •

slave 0
ext rd m [RName]

wr n [RName]
wr s BName

pre true
post n = s

Two simple validation properties for slave are worth mentioning as they highlight the use of
the frames: m is unchanged as it is read-only, and s is non-deterministically assigned to any
value permitted by the invariant.

"--m= m
s E BName - {n, m}

The interaction between invariant and externals is interesting. Here, read access to m is
required although m is not referred to in the specification. This is because m is linked to s vla
the invariant and the value of s cannot be fully determined by the post-condition, Thu~My
implementation will need to read m in order to ascertain what value it is valid to assign to s.

On the other hand, in this example, read access is not required to ms although ms is linked to
m, and hence also to s, by the invariant. In general however, in order to ascertain the validity
of possible implementations, it may be neccessary to draw information from the variables in
the transitive closure of the "linked by invariant" relation. Of course, this set of variables may
be quite different from those that appear in the operation specification or those that will be
accessed by the implementation.

acquire

13

-
acq (I: MName)
ext wr ms : MName-set

wr n,m : [BName]
pre 1 ~ ms A ..., (n = nil A m = nil)
post ms = ms U {I} A

(ms =f {} => m = mAn = n) A
(ms = {} => m = n A n = nil)

Interestingly, the last conjunct of this postcondition may be considered redundant. When
ms = {},then ms = {I} and so m must be assigned a non nil value. Now, as read access to s
is prohibited, the only buffer that we can be sure is not already in use is that previously assigned
to n. So any correct implementation that respected the frames of reference must assign this
buffer to m. Then the only remaining possible value for n is nil. However, to hide so much
information in the externals clauses seems to be counter-productive.

release

rel (1: MName)
ext wr ms MName-set

wr n, m : [BName]
prelEms

post ms = ms - {l} A
(ms =I {} => m = m /\ n = n) /\
(ms = { } /\n '# nil => n = n /\m = nil) /\
(ms = { } A n = nil => n = m /\ m = nil)

In this case the variables of the specification and those of the implementation are the same.
Even though s is not an independent part of the state, read access to s is not needed. It is
possible to prove satisfiability and validity of implementations without knowledge of the value
of s.

4.3 Discussion

Read frames and scoping

In this specification we have seen some complex interdependencies between the invariant,
externals and postcondition. In slave, read access to one component was required although that
component was not itself referred to in the specification. In acquire, information in the externals
could be used to define a highly implicit specification. In release however, we saw taht some
components were not relevant to the operation defintion even though they were related those
mentioned in the predicates.

To clarify some of these issues it is helpful to think of the externals clauses not as giving
information about the variables mentioned in the specification, but rather to see them as giving

14

-
"advanced information" of what access to state variables an implementation of that operation
can be allowed to make. This distinction separates their semantic role giving information about
access to state variables from the syntactic role they play in binding the free variables of the
precondition and post-condition.
The "linked by invariant" condition partitions the state components into independent subsets
and these parts are the level of granularity atwhich sensecan bemade of the operationdefinition.
Thus, in general, they are also the finest partition for which satisfiabilityand refinement can be
sensibly defined.

More examples are given in [Bic93] where the roles of frames and invariants in algorithm
refinement is considered more closely, independence is defined, and a framework for algorithm
refinement with frames is proposed.

5 The improved MSMIE •

As mentioned earlier, Bruns and Anderson observe that, as it stands, the three buffer MSMIE
can exhibit an undesirable behaviour. That is, it is possible for a series of overlapping reads,
each beginning before the last ends, to lock-out indefinitely the lastest data. They suggest an
"improved" protocol that uses a fourth buffer to eliminate this possibility.

Surprisingly, although this new protocol exhibits the same external behaviour as the earlier one,
there is no formal refinement relationship between them. To understand why this should be
recall that the part of the system modelled does not concern itself with the actual assignment of
processors to buffers and does not model the actual transfer of information from slave tomasters.
Thus, no information about the flags is exported from the system, and all the machinations of
the state can be seen as purely an implementation bias in the model contributing nothing to the
external behavior of the part of the system modelled.

The four buffer version is, however, a refinementof themost abstract specificationgiven earlier,
which gave an unbiased model of the external behaviour. This gives another important reason
for considering the abstractions. In particular, validations of the abstract model will carry over
to both the three and four buffer versions.
Of course in this case, it is the internal properties of the model itself that are of interest, as it
is these properties that influence the freshness of the data read by the masters. In this respect,
the four buffer protocol is indeed better behaved as it would lead to a system where the delay
in information transfer is at worst equal to that of the three buffer version.

In the four buffer version of MSMIE, there is also an extra status possible for buffers. 0 is used
to denote a buffer that is still being read but no longer contains most up-to-date information.

Thus

s as before, is a buffer that is reserved for writing

n as before, is a buffer that has latest info but is not being read (waiting for read)

m is a buffer being read, (and the newest such)

o is a buffer being read (but there is also a newer one being read)

15

-
ms is the set of masters reading m

os is the set of masters reading o.

New masters are always assigned to the n or the m buffer. m buffers are "demoted" to 0 status
in a way that ensures that the 0 buffer will periodically become idle. In this way the protocol
avoids the "refresh" problems of the three-buffer version. Again detailled descriptions of the
mechanisms used achieve is postponed until the formal treatment.

It might help to think of i --+ s --+ n as the write phase of a buffer and n --+ m --+ 0

--+ ias the read phase. Then MSMIE always has two buffers in write phase and two buffers in
read phase.

5.1 The state

types

BName = {1,2,3,4}

state E4 of
s BName
n : [BName]
m : [BName]
o : [BName]

ms : MName-set
os : MName-set

inv mk-E4(s, n, m, 0, ms, os) b. (m = nil ¢} ms = {}) /\
(0 = nil ¢} os = { }) /\
(ms n os = { }) /\
(nil-or-different([s, n, m, 0])) /\
(m = nil /\ n = nil =?- 0 = nil)

init mk-E4(s, n, m, 0, ms, os) D. mk-E(l, nil, nil, nil, {}, {})
end

The form of the last conjunct in the invariant, which rules out {s,o,i,i}m, is the result of the
way that readers of m are released which, as in the earlier specifications, ensures that there is
always an m or an n buffer remaining.

A validation property for the state

The invariant only allows the following 7 combinations of buffer status:

{s,i,i,i}m, {s,i,i,n}m, [s.l.l.rnj.,, [s.l.m.nj.,, {s,i,m,o}m, {s.l.n.oj.,, {s.rn.n,o};

Retrieve function

As stated, this version is a data refinement of the most abstract model. The retrieve function is
straightforward:

16

-
retr4_0 : 174-+ .IQ

retr4_o(mk-174(s, n, m, 0, ms, OS)) b. mk-.IQ(n = nil /\ m = nil /\ 0 = nil, ms U os)

5.2 The Operations

slave

slave 0
ext rd m, 0

wrn
wrs

pre true
post n =s

[BName]
[BName]
BName

•

This time more variables will need to be accessed by the implementation than are mentioned
in the predicates. The implementation will require access to m and 0 in order to be able to set
a valid s. This is expressed in the validation condition

s E RName - {n, m, o}

This access requirement is recorded in the externals even though the pre and postconditions do
not mention m and o.

The descriptions of acquire and release that follow are rather unwieldy. They given by case
analyses and as different variables change in the different cases, the operations have to have a
wide write access and hence require a lot of clauses saying which variables do not change in
that case.
For the time being we introduce an informal shorthand for this, but in the next section give
structured definitions of operations in a style after Dijkstra's guarded commands and common
to other model oriented methods such as Z's schema conjunction and B's parallel generalised
substitutions.

Jd : A* -+ Expr

"---Jd(l) b. Vi E indsl·"l(i) = l(i)"

Note that this function must be considered as an informal meta-notational shorthand rather
than a formal function defintion. It is not in fact formally correct to mix such metalinguistic
constructs in the object level specification.

acquire

Acquire behaves in a manner very similar to before: beginning the read on either the n or the
m buffer as appropriate. The only extra consideration is in the case where there is an n buffer

17

waiting, an m buffer already being read, but there is no °buffer. In this case, where previously
the new read would have been assigned to the m buffer, it is now possible to begin the read on
the n buffer, hence the improvment to the freshness of the data exchanged. This is achieved
by reassigning the buffer that was already being read to 0, and correspondingly, the record of
processors reading that buffer, ms, gets moved to os; the new read is started on the buffer that
was n, thus making it into a new m, and the new reader is recorded in ms. No more masters
will now be assigned to the ° buffer thus it will eventually become idle and available to go
through the write cycle again.

acq (I: MName)
ext wr ms, os : MName-set

wr n, m, ° : [BName]
pre 1 ~ ms U os A -. (n = nil A m = nil)

post (ms U os = ms U Os U {I}) A
em= nil =} m = n A n = nil AId ([0, os])) A
(m =1= nil A (0 =1= nil V n = nil) =} Id([m, n, 0, os])) A
(m =1= nil A 0 = nil A n =1= nil
=} ° = Tn A m = n A n = nil A os = ms A ms = {I})

•

release

Release behaves exactly as before but with an extra case to deal with the case where we release
a buffer that is reading the 0 buffer. When the last ° reader releases, °becomes idle.

rel (I: MName)
ext wr ms, os : MName-set

wr n, m, 0 : [BName]
pre 1 E ms U os
post ms U os = ms U Os - {I} A

({I} ems=} Id([m,n,o,os]))A
({I} = ms An = nil =} Id([o, os])" n = 'm "m = nil) 1\

({ I} = ms " n =1= nil =} Jd([n, 0, os]) " m = nil) "
({I} c Os =} ld([m,n,o,ms]))"
({I} = Os =} Id([m, n, ms])" 0= nil)

Note that, in several places, clauses of acq and rei give more detail than required. For example,
in last conjunct ° = nil is redundant because we know os = {}. Similarly, the clause ° = 0
in the penultimate line is also unnecessary. Again, the redundant clauses are left in for the sake
of clarity.

Clearly,with this type of operation where the postcondition consits of many cases, the operation
definitions become rather difficult to read. A more structured approach to the definition of
operations can be taken in Z through the use of the schema calculus, in particular schema
conjunction would be particularly useful here[Spivey88]. The B notation also provides a
similar structuring mechanism through parallel combination of gernalised substitutions. These
however are subject to some syntactic constraints to ensure non-interferencewhich are in general

18

unnecessarily restrictive. The next section considers how this kind of structuring mechanism
could be added to the VDM notation.

6 Structuring the improved MSMIE

With the same state as given above, it is useful to consider how Z style operation conjuction
can be used to give a clearer specification of the acquire and release operations.

This section is more exploratory and introduces some new notation to VDM. Only an informal
description of the new constructs is given here, a formal treatment of this style of operation
defintion is the subject of ongoing research by the author. In particular the interaction between
such structuring mechanisms and the frames of externals is being considered.

•
Acquire

Acquire is broken into three cases:

acq (I: MName) = acq-to-m(I) V acq-n-to-m(I) V acq-m-to-o(1)
ext wr ms, os : MName-set

wr n, m, 0 : [BName]
pre 1 f/. ms U os /\ --,(n = nil /\ m = nil)
post to-be-calculated

This disjunction of operations is a guarded non-deterministic choice: preconditions are dis
joined; postconditions are expanded by difference in frames, guarded by hooked preconditions
and then conjoined; externals are unioned but also need to be sufficient to test the guards.

Externals, precondition and postconditions are optional. They can be calculated from the
definition and invariant, but it may be useful to give them in cases where a less strict condition
than would be calculated is what is required. (That is for wider externals, stronger pre or weaker
post.) Giving them explicitly also breaks up the proofs by, in effect, giving a lemma about the
specification.

The first sub-operation is called when new reader will be absorbed into an existing set of readers.
For this to occur, there must be a buffer m status and also it must be impossible to demote this
buffer to 0 status. This last requirement means that, either there must be no n buffer, or if there
is, then there must also be an 0 buffer. These conditions are captured in the precondition.

acq-to-m (1:MName)
ext wr ms : MName-set
pre m =j:. nil /\ (n =j:. nil =} 0 =I- nil)
post ms =ms U {I}

Although m, n, and 0 are mentioned in the precondition, the implementation will not require
access to any of these so they are not included in the read frame. This shows how the free

19

-
variables of the operation pre and postcondition might not be the same as those variables that
we are specifying could be be accessed by the implementation.

Note that, as stated here, we have weakened the precondition slightly by not requiring that
1 ~ ms. In fact we know, however, that the operation will only be called in situation where this
is indeed that case.
The second sub-operation is called when acquire will cause an n to become an m:

acq-n-to-m (I: MName)
ext wr ms : MName-set

wr n, m : [BName]
pre n =I nil /\ m = nil
post ms =ms U {I} /\

m =n/\n = nil

The third sub-operation is called when the ms will be demoted to os:

acq-m-to-o (1: MName)
ext wr ms, os : MName-set

wr n, m, 0 : [BName]
pre n =I nil /\ m =I nil /\ 0 = nil
post os = ms /\ ms = {I} /\

o = Tn /\ m = n/\n = nil

rel-from-os (1: MName)
ext wr os : MName-set

wr 0 : [BName]
pre 1 E os

post os = Os - {I} /\ 0 E {O-, nil}

Release

Release is broken into four cases:

rel (1:MName) = rel-from-os(l) V re/-m-to-m(1)V rel-m-to-i(1)V rel-m-to-n(I)

ext wr ms, os : MName-set
wr n, m, 0 : [BName]

pre IE ms U os
post to-be-calculated

The first sub-operation is called when new reader will be released from os. It handles both the
case when os becomes empty and when it does not.

20

--~
Again the last clause could be thought of as redundant: if os becomes empty then the invariant
will ensure that 0 is assigned to nil; however, if os remains nonempty, the only choice that we
know will not break the invariant is to leave the 0 buffer as is.
The second sub-op is called when I will be dropped from ms, but ms remains non-empty:

rel-m-to-m (I: MName)
ext wr ms : MName-set
pre {I} C ms

post ms = ms - {I}

The third sub-op is called when I will be dropped from ms causing ms to becomes empty in
the presence of an n:

•rel-m-io-nil (1:MName)
ext wr ms : MName-set

wr m : [BName]
pre {I} = ms A n -=I nil
post ms = {}

The invariant ensures that m = nil.

Again we have a variable, n, appearing in the precondition that is not in the frame.

Fourth sub-op is called when dropping I from ms will cause ms to becomes empty when no n
is present:

rel-m-to-n (1:MName)
ext wr ms : MName-set

wr m, n : [BName]
pre {I} = ms 1\ n = nil

post ms = { } A m = nil A n = Tn

This structuring of the operation has enabled amoreprogressive defintionof the oerations. It has
also afforded the chance to give narrow frames to the sub-operations and has thus precipitated
more concise predicates.

These specifications have shown that far from being a minor concern, there are clearly many
interesting questions of design choice and methodology that arise from careful consideration
of the read and write frames in model-oriented operation specifications.

In VDM operations, the semantic role of the read frame is often underplayed. Typically, it is
interpreted as merely providing syntactic scoping for variables appearing in the precondition
or postcondition. Alternatively, it could be interpreted as a constraint on implementations -
restricting which state components can be read. Thus rather than think of the externals clauses
as giving information about the variables mentioned in the specification, we see them as giving
"advanced information" of what access to state variables the eventual implementation of that
operation can be allowed to make.

21

7 General Discussion: Methodological Issues

These issues are taken up inmore detail in [Bic93]but for the present paper weend with a general
discussion of methodological questions that arise from the comparison of this model-oriented
treatment of the example given here with the previous analysis using CCS.

This paper has provided model oriented development of an application that was previous
analysed through formalisation in a process algebraic notation (CCS) [BA91, BA92]. As a
comparative study it highlights the differentbenefits of each approach and raises somequestions
concerning the choice methodogy to be used in the development process. This section gives a
brief discussion of some of these concerns.

One of the first questions the system designer must ask him/herself when deciding to undertake
the formal development of a software system is which of the broad churches of formalism
to adopt. Obviously the answer to this question will depend on many things. In practice,
one consideration will be the existing skills of the personnel that will undertake the work, but
clearly, the choice should also depend on the type of system that is going to be defined and, in
particular, what features of that system are to be the subject of analysis.

Twopossible approaches to system description are the so called 'Model-Oriented' and 'Process
Algebra' based formalisms. One criterion that may be considered important in choosing
between these is the degree of concurrency envisaged for the system,orperhaps more accurately,
the degree to which it is the concurrency in the system that will be the subject of the formal
analysis to be undertaken. Model-oriented (MO)methods are typically advocated for sequential
systems and process-based methods for the study of concurrency.

In process algebra (PA) we know, from the unfolding lemma, that it is always possible to
abstract away from parallelism, that is to view the system behaviour from the outside. We
may then study whole system behaviours such as equivalences between different combinations
of operations. MO methods are not so atuned to studying these behaviours, rather they are
typically used to study the system at the operation and data level. That is they are used study
the effects of individual operations on the state or alternative possible models for the data.

There is, of course, a direct correspondance between the two views: both define an abstract
machine: a state space and the possible transitions between states. The difference is merely one
of presentation: MO defines, for each operation,what changes of state are possible; whereas, PA
gives, for each state, what operations are possible. Notions of refinement are correspondingly
similar.
The different formalisms are best suited to the different concerns that arise at different stages of
the development process. Some validation of a formal description is likely to be in terms of the
behaviour of the whole system: for example we may wish to assert that we cannot reach certain
states, or that we cannot reach a state when no operation can apply. Other validation statements
are about individual operations, for example, if some condition holds before an operation then
it will also hold afterwards. In PA we have specific calculi, such as Hennessey-Milner logic
and its modal extensions for validating whole system properties. The equivalent methodology
does not seem to have been worked out for MO methods.
On the other hand, issues surounding data refinement have been largely ignored in PA as the

22

reduction of the value passing calculus to the pure calculus side-steps such issues. It would
seem to be an obvious step forward to develop a formalism that combines the benefits of the
two camps.

It is quite simple to imagine a formalism that is a hybrid of the two. One could consider this to be
PA with value passing or MO with interleaving. It would describe the overall system behaviour
in a style like PA but without parallelism and enable "holistic" validation on this model. Then
it would be possible to proceed with MO style data and algorithm refinement. During design
process, possible parallelism may re-emerge. Data refinement can lead to the identification of
independant parts of the machine that may be implemented separately, algorithm development
may make code where temporal ordering of statements is unimportant. Such parallelism could
be reintroduced as it arose. In order to do allow such underspecification in algorithm refinement,
"framing" the area of influence of each operation is vital in order to control the parallelism and
avoid unnecessary bias at each stage. Making best use of the read and write frames may go
some way towards this. •

References

[Abrial93] The B Method. lR.Abrial. To be published, 1993.

[Bic93] Bicarregui, lC. , Algorithm Refinement with Read and Write Frames. Formal Methods
Europe '93. LNCS 670, Springer-Verlag.

[BicRit93] Bicarregui, J.C. and Ritchie, B., Invariants, Frames and Postconditions: a compar
ison of the VDM and B notations. Formal Methods Europe '93. LNCS 670, Springer
Verlag.

[BA91] Bruns, G. and Anderson, S., The Formalization of a Communications Protocol. LFCS
TR 91-137 (April 1991).

[BA92] Bruns, G. and Anderson, S., The Formalization of a Communications Protocol.
LFCS/Adelard TR. Safety-Critical Computer Systems, April 6, 1992.

[Spivey88] Understanding Z. lM. Spivey, Cambridge University Press, 1988.

[Jones90] Systematic Software Devlopment using VDM (second edition), C.B. Jones. Prentice
Hall, 1990.

[Mor91] Programming from Specifications, C. Morgan, Prentice Hall.

[MSMIE] L.L. Santoline et al. Multiprocessor Shared-Memory Information Exchange. IEEE
Transactions on Nuclear Science. Vo1.36.No.1, Feb 1989. pp. 626-633.

23

