
g Science and Engineering Research Council,...
$ Rutherford Appleton Laboratory
~ Chilton DIDCOT axon OXll OQX RAL-93-100a:

Invariants, Frames and Postconditions:
a Comparison of Two Formal
Specification Notations
J Bicarregui and B Ritchie

December 1993

Invariants, Frames and Postconditions:
a Comparison of Two Formal Specification Notations!

Juan Bicarregui
Brian Ritchie

•
Systems Engineering Division

SERe Rutherford Appleton Laboratory

Oxon OXII OQZ, UK

Abstract

VDM and B are two "model-oriented" formal methods. Each gives a notation for the
specification of systems as state machines in terms of a set of states with operations defined
as relations on that set. Each has a notion of refinementof data and operations based on the
principles of reduction of non-determinism and increase in definedness.

This paper makes a comparison of the two notations through an example of a communi
cations protocol previously fonnalised in [BA91]. Two abstractions and two reifications of
the original specification are given.

Particular attention is paid to three areas where the notations differ: to the. use of
postconditions that assume the invariant as opposed to postconditions that enforce it; to the
explicit "framing" of operations as opposed to the "minimal frame" approach; and to the use
of relational postconditions as opposed to generalised substitutions.

1 Introduction

In [BA92], Bruns and Anderson describe a communications protocol in ees with value-passing.
A data model for the values is given which is, in effect, a model of the state of the device.
This model is defined in terms of the usual data constructors of model-oriented specification, but
without the use of invariants.

The part of the protocol described is a mechanism for manipulating a series of flags that indicate
the status of some shared-memory buffers. These flags are used to ensure that there is no "data
tearing" as multiple processors simultaneously read and write to the buffers. For the operations

tAn abrigedversionof thispaperwaspresentedat theFME'93 Symposium[BR93].

1

that update these flags, semaphores are used to ensure that each operation has uni.nterrupted
access to the flags. Thus this part of the behaviour can be described as a purely sequential system.

This paper considers some alternative data-models for the specification (and reification) of these
status flags. In particular, attention is paid to the use of invariants in the data model and frames
of reference in the operations definitions, neither of which are available in the data modelling
language of [BA92]. It is argued that these features can playa key role in describing the system
in a "natural" fashion and can thus help to deepen our understanding of the model.

VDM [Jones90] and B [AbriaI92b] are used for the analysis, and particular attention is paid to
some areas where the notation differ: to the use of postconditions that assume the invariant as
opposed to postconditions that enforce it; to the explicit "framing" of operations as opposed to
the "minimal frame" approach; to the use of relational postconditions as opposed to generalised
substitutions. In this small example, there is little scope for the effective use of structuring
of specifications that is one of the major features of the B method. Familiarity with the basic
concepts and notation of VDM and B is assumed.

The remainder of this first section is an informal description of the application and desired
protocol. The second through fifth sections present the development in VDM. Section two
presents a formal specification of the system at a level of abstraction similar to the "abstract"
description of [BA92]. Motivated by an analysis of the invariant of that specification, section
three describes two further abstractions that can be made. Section four provides an alternative
model of the system that makes it possible to write more useful framing information about the
operations, the fifth section extends this model to the "improved" protocol of [BA92]. The sixth
section considers the development again using B, presenting those elements of the development
that highlight the differences in the notations. The last section is a discussion of some of the
points arising from the example and their treatment in the two notations.

1.1 The Multiprocessor Shared-Memory Information Exchange (MSMIE)

MSMIE, Multiprocessor Shared-Memory Information Exchange, is a protocol that addresses
intra-subsystem communications with "several features which make it ideally suited to
inter-processor communications in distributed, microprocessor-based nuclear safety systems"
[MSMIE]. It has been used in the embedded software of Westinghouse nuclear systems designs.

The protocol uses multiple buffering to ensure that no "data-tearing" occurs, that is, it ensures
that data is never overwritten by one process whilst it is being read by another. One important
requirement is that neither writing nor reading processes should have to wait for a buffer to
become available; another is that "recent" information should be passed, via the buffers, from
writers to readers. In the simplification considered in [BA92] it is assumed that information is
being passed from a single writing "slave" processor, to several reading "master" processors.

The information exchange is realised by a system with three buffers. Very roughly, at any time,
one buffer is available for writing, one for reading and the third is either in between a write and

2

-

a read and hence contains the most recently written information, or between a read and a write
and so is idle.

The status of each buffer is recorded by a flag which can take one of four values:

s -"assigned to slave." This buffer is reserved for writing, it may actually be being
written at the moment or just marked as available for writing.

n -"newest." This buffer has just been written and contains the latest information.
It is not being read at the moment.

m -"assigned to master." This buffer is being read by one or more processors.
-"idle." This buffer is idle, not being read or written and not containing the latest

data.

The names of the master processors that are currently reading are also stored in the state.

As mentioned earlier, neither the slave and master processors that access the buffers in parallel
nor the actual transference of data are modelled here. This analysis concerns only the operations
that modify the buffer status flags. These operations are protected by a system of semaphores
which allow each operation uninterrupted access to the state and thus their behaviour is purely
sequential.

There are three of these operations:

slave This operation is executed when a write finishes. slave sets the status of the
buffer that was being written to "newest" thus replacing any other buffer with
this status.

acquire This is executed when a read begins. The new reader name (passed as
a parameter) is added to the set of readers and status flags are updated as
appropriate.

release Executed when a read ends, this removes a reader from the set and updates
flags as appropriate.

The details of the behaviour of these operations are quite intricate and their precise description is
left to the formal specification in the following section.

It should be noted however that, as it stands, the protocol could have the undesirable property that
information flow from slave to master can be held up indefinitely. This possibility is ruled out in
the original system [MSMIE] via timing constraints whereas [BA92] suggests an improvement
to the protocol (using a fourth buffer) that eliminates the possibility without recourse to timing
arguments. This improved protocol is also examined in later sections.

3

-

2 A VDM specification of MSMIE

The state in [BA92] is defined as

"a set of three pairs (a, 1)where a is the buffer status, drawn from {i, s, n, m}, and I
is the buffer identification, drawn from {I, 2, 3}. The buffers are given as a set rather
than a tuple to enable pattern matching rules in the description of the protocol."

The pattern matching rules do indeed give a concise description of the transitions of the system,
in particular, the associative and commutative properties of sets are used to good effect in order to
avoid much repetitive case analysis. However, the present authors found that considerable effort
was required to check that the patterns given were exhaustive and that the effects of overlaps
between patterns were sensible. This difficulty is exacerbated by the fact that many of the states
in the model are unreachable but no invariant on the state type is given to exclude them.

The specification given here makes the choice of a sequence of three buffers for the state
description. In addition, an invariant is used to exclude unwanted values from the state type.

2.1 The state

Possible values of the status flags are given via an enumerated type; the type of the names of
master (reading) processors is deferred.

types
Status = {s,m,n,i}

MName = token

'The state is composed of three buffer status flags and a set of the names of the currently reading
masters. The invariant captures the fact that only certain states are reachable by the operations.
It gives restrictions as to the possible combinations of status flags, namely that there is always
exactly one buffer assigned to the writing slave; there is at most one currently being read and at
most one with newest data that is not being read; and the set of reader names is empty precisely
when there is no buffer being read. The initial state assigns one buffer to the slave and records
that the other two buffers are idle.

4

-_

state E of
b : Status"

ms : MName-set
inv mk-E(b, ms) 6. lenb= 3 /\

count(s, b) = 1/\
count(m, b) E {O, I} /\
count(n, b) E {O,I} /\
(count(m, b) = ° ¢:} ms = {})

initmk-E(b, ms) 6. b = [s,i,i] /\ ms = {}
end

where!

count :Status x Status" --+ N

count(status,l) 6. len(I!> status)

A validation condition on the state

We observe that only four combinations of buffers are allowed by the invariant:

Vmk-E(b, ms): E· {b(l), b(2), b(3)}m E {{s,i,i}m, {s.l.nj.,, {s,i,m}m, {s,n,m}m}

where we have used {... }m as a notation for bags (multisets), for example {s,i,i}m is the bag
containing one '5' and two 'i's.

Thus the invariant has captured, and brought to the fore, properties that would otherwise have to
be deduced by looking in detail at the definitions of the operations. It makes it possible to build
quickly our intuition of the workings of the specifiedmachine. We know immediately that there
is always one buffer reserved for writing, at most one being read, and at most one with newest
data not being read.

2.2 The Operations

Slave

The first operation, slave, is executed when a write completes. It reassigns the status of the buffer
just written, previously 5, to n, thus replacing any other n buffer. It also non-deterministically

1Here, range restriction is used on sequences, viewing them as maps from natural numbers to elements.

5

chooses another available buffer which is to be the new buffer reserved for writing and assigns
to it status s.

slave 0
ext wr b : Status"
pre true
post Vi E {I, 2, 3} ...__

(b (i) = s => b(i) = n) "..__
(b(i)=m => b(i)=m)

The postcondition may, at first sight, seem to be to liberal: what should happen to any buffer that
had status n or i? However, in conjunction with the invariant and the frame, it ensures that no
other n buffer remains, that exactly one new s buffer is chosen, and that no new m buffers are
added. Thus for example we can write the following validation property for slave which can be
proved in order to increase confidence in the correctness of the postcondition:

..__
b(i)E{n,i} => b(i)E{i,s}

Note that all three implications could have been equivalences without changing the operation.

Acquire

The second operation, acquire, is executed when a read is about to start. It adds the new reader's
name, passed as a parameter, to the record of active readers and reassigns status flags as necessary.

If there is a buffer currently being read then the new read also begins to read that same buffer
and no status change is required. Otherwise the new read starts on the buffer with newest data,
status n, and reassigns the status of that buffer to m.

The operation can only be executed in these two situations and this information is recorded in
the precondition which requires that there is either a status m or status n buffer. The precondition
also records the fact that the operation is only required to function when the new reader is not
already in the set of readers.

Note that, in selecting which buffer is to be read, it is not always possible to choose the buffer
with newest data. This situation occurs when there are currently buffers with both status m and
n, which arises when the data in the n buffer has become available since the start of an ongoing
read, that is, when there has been a slave since an acquire for which there has not yet been a
corresponding release. In this situation, were the new master to begin reading the n buffer, there
would then be two buffers reserved for reading. Consequently, should another slave now occur,
attempting to preserve this new data would leave no buffer being available for another write to
start, thus contradicting one of the fundamental requirements of the protocol: that processors

6

-

should never have to wait to gain access to buffers. The invariant is designed to prevent this
possibility, by insisting that there is always one (and precisely one) buffer with status s.

acq (I: MName)
ext wr b : Status"

wr ms : MName-set
pre 1 ~ tns tv

3i E {1,2,3}· b(i) = n V b(i) = m
post ms = ms U {I}"

Vi E {1,2,3}·
if b(i) = n Ams = {} then b(i) =m else b(i) = b(i)

•

It is worth observing that the last line of the postcondition could have been written as

"- "-if b (i) = n then b(i) E {n,m} else b(i) = b (i)

or simply as

"- "-b (i) # n " ms # {} :::}b(i) = b (i).

The apparent non-determinism in the alternatives is illusory as the invariant will ensure that there
is no real choice as to what status to assign to any buffer that previously had status n. However,
the longer and apparently stronger postcondition is preferred as the shorter versions seem to be
more cryptic.

Release

The release operation is executed when a reading, master processor finishes its read. The name
of the processor is removed from the set of readers and again, status flags reassigned as required.

If this master is not the last one currently reading, then no change is required to the status flags.
However, if this is the last master currently reading the m buffer, then this buffer must have its
flag reassigned. There are two possibilities. On the one hand, should there be another buffer
with status n available at this time, that is if a write has been completed since the current "chain
of reads" began on this buffer, then the m buffer no longer contains the most recent data and so
should now be set to i. On the other hand, if there has been no write since the chain of reads
began, and hence there is no n buffer available, the m buffer contains the most recent data and its
status should be reset to n.

7

-

rei (1: MName)
ext wr b Status"

wr ms : MName-set
pre 1 E ms
post ms =ms - {I} /\

Vi E {1,2,3}·
"--if ms = {} /\ b (i) = m

then b(i) E {n, i} /\ count(n, b) = 1
"--else b(i) = b (i)

Again there is some choice as to how much of the information that is deducible from the invariant
should be made explicit in the postcondition. For example the first conjunct of the 'then' clause
b(i) E {n, i} could have been omitted as no other possibilities are permitted by the invariant, or
alternatively, the whole 'then' clause could be replaced by a more explicit form

"--if 3j E {1,2,3}· b (j) = n then b(i) = i else b(i) = n

It is debatable which gives the clearer specification.

This specificationhas given a fairly algorithmic description of which buffers are assigned to what
status by each operation. This is a good level of abstraction at which to reason about whole
system safety properties such as the freshness of the data transferred from slave to masters which
is the focus of [BA92]. Much of the detail of this specification, however, is undesirable clutter
for other purposes and it is interesting to give more "external" views of the system, as is done in
the next section.

3 Two more-abstract specifications

In this section we give two formal abstractions of the above specification. The new specifications
maintain the same external behaviour, however the abstract states are progressively simpler than
the onejust given. The abstractions arise by ignoring detail in the state model that is unnecessary
to capture the external behaviour. Retrieve functions from concrete to abstract states are also given
which are many-to-one thus demonstrating "implementation bias" in the concrete specification.

As it is usual to give more concrete specifications successively higher numbers, from now on we
will use ~ to refer to the state of the specificationgiven earlier.

8

3.1 A first abstraction: ignoring the identity of butTers

Taking inspiration from the validation condition on the state of the above specification, we can
give a more abstract specification where, rather than explicitly giving the status of each individual
buffer, the state only records which of the four possible combinations of buffer the machine is in.

types

Status; = {sii, sin, sim, snm}

state 17l of
bs : Statusl
ms : MName-set

inv mk-17l(bs, ms) ~ ms = {} {:} bs E {sii,sin}
init mk-17l(bs, ms) ~ bs = sii /\ ms = {}
end

operations

•

slave 0
ext wr bs : Status,
pre true.__
post (bs E {sii,sin} =} bs = sin) /\.__

(bs E {sim,snm} =} bs = snm)

As in the earlier specification of slave, there is no change to the readers of the m buffer, thus
there is no need to access ms.

acq (I: MName)
ext wr bs : Status]

wr ms : MName-set
pre I fI. ms /\ bs "1 sii
post ms = ms U {I} /\

if ms = {} then bs = sim else bs = bs

rei (I: MName)
ext wr bs : Status,

wr ms : MName-set
prelEms

post ms = ms - {I} /\

if ms = {} then bs = sin else bs = bs

9

-

The retrieve function from the first, more concrete, specification to this one is simple to define
by cases.

ret1'2.t :L1 --+ 17t

ret1'2.t(mk-17(bt, lJ.z.,~,ms)) /:).
cases (count(n, [bI'~, ~]), count(m, [bI'~' ~])) of
(0,0) --+ mk-17I(sii,ms)
(1,0) --+ mk-17t(sin,ms)
(0, 1) --+ mk-17I (sim, ms)
(1,1) --+ mk-E, (snm, ms)

end

This specification abstracts away from the behaviour of the individual buffers and so it does
not help us to reason about the algorithm for updating them. However, it does exhibit a useful
congruence on the original state space and makes the property of not returning to the sii states
very clear. This observation motivates the following further abstraction.

3.2 A further abstraction

In this specification we abstract away from the buffers entirely: their place being taken by a
single boolean flag that records whether a write has ever occurred. Although this specification is
consequently extremely simple, it still exhibits the same external behaviour as the original.

state Ii> of
b:B

ms : MName-set
inv mk-1:i>(b, ms) /:). b = false => ms = {}
initmk-~(b, ms) /:). b = false 1\ ms = {}
end

The operations specifications are now very simple:

operations

slave 0
extwr b : B
pre true
post b = true

10

-

acq (1:MName)
extrdb : B

wr ms : MName-set
pre b = true 1\ 1 rt ms
post ms = ms U {I}

rel (1: MName)
extwr ms : MName-set
prelEms
post ms = ms - {l}

•

The retrieve function is straightforward.

retrl_0 : 171 -+ ..EO
ret1)_o(mk-17l (bs, ms)) !::. mk-..EO(bs "# sii, ms)

4 An alternative view of MSMIE

The above specificationsare based on the state recording the status of each buffer. Effectively.the
state is a map from each buffer to its status. Returning to the original specification. we observe
that there is always exactly one buffer with status s and at most one with status m or n. This
makes it possible to invert the map and think of the state as mapping each status to a buffer.

This leads to a specification that is equivalent to the first one, but might yield a more efficient
basis for an implementation. This change also makes it possible to specify the access constraints
more closely.

4.1 Thestate

types

BName = {1,2,3}

MName = token

11

-

state 1:3 of
s : BName
n : [BName]
m : [BName]
ms : MName-set

inv mk-L3(s, n, m, ms) 6. (m = nil <* ms = {})"
nil-or-different([s, m, n])

init mk-L3(s, n, m, ms) 6. mk-E(l, nil, nil, {})
end

where nil-or-different([s, n, m]) is true if and only if each of s, n and m are each mapped to
distinct BNAMEs or nil:

nil-or-different : [BNAME]* --+ B

nil-or-different(l) 6. Vi E inds I· l(i) = nil V l(i) ¢: elems (i ~ 1)

It is perhapsworth noting that an alternativedatamodelwouldconsist of a singlemap {Status} BN AME.
However, we have chosen the above because this allows us to narrow the read and write frames
of some of the operations.

The retrieve function

In this case we give the retrieve function implicitly, noting however that it is fully determined
(and implementable):

retT'j.2 (mk-L3(s, n, m, ms): L3) 0"2: L2
pre true
post let mk-14(bs, m.92)= L2 in

len bs = 3"
Vi E {1,2,3}·(s = i ::::}b, = s)"

(n = i ::::} bi = n) "
(m = i ::::}b, = m) "
(i rt. {s, n, m} ::::} b, = i)

"m.92 = ms

12

-

4.2 The Operations

slave

operations

slave 0
ext rd m [BName]

wr n [BName]
wr s BName

pre true
post n = s

•

The interaction between invariant and externals is interesting. Here, read access to m is required
although m is not referred to in the specification. This is because m is linked to s via the invariant
and the value of s which is not fully determined by the post-condition: any implementation will
need to read m in order to ascertain what value it is valid to assign to s.

Thus rather than think of the externals clauses as giving information about the variables men
tioned in the specification, we see them as giving details of what access to state variables an
implementation of that operation can be allowed to make. This distinction separates their se
mantic role giving information about access to state variables from the syntactic role they play
in binding the free variables of the pre- and post-condition.

acquire

acq (I: MName)
ext wr ms : MName-set

wr n, m : [BName]
pre I fi_ ms A -, (n = nil A m = nil)
post ms =ms U {I} A

(ms -# {} :::} m = mAn = n) A
(ms = {} :::}m = n A n = nil)

Interestingly, the last conjunct of this postcondition could be considered to be redundant. When
ms = {} and thus Tn is nil, then ms = {I} and so m must be assigned a non nil value. Now,
as read access to s is prohibited, the only buffer that we can be sure is not already in use is
that previously assigned to n. So any implementation that respects the frames of reference must
assign this buffer to m. Then the only remaining possible value for n is nil. However, to hide so
much information in the externals clause seems to be counter-productive.

13

-

release

rei (I:MName)
extwr ms MName-set

wr n, m : [BName]
pre/Ems
post ms = ms - {I} A

(ms =f:. {} => m = mAn = n) A
(ms = {} A n =f:. nil => n = n Am = nil) A
(ms = {}A n = nil => n = Tn A m = nil)

5 The improved MSMIE

As mentioned earlier, Bruns andAnderson observe that, as it stands, the three buffer MSMIE can
exhibit an undesirable behaviour. That is, it is possible for a series of overlapping reads, each
beginning before the last ends, to lock-out indefinitely the latest data. They suggest an improved
protocol that uses a fourth buffer to eliminate this possibility.

Surprisingly, although this new protocol exhibits the same external behaviour as the earlier one,
there is no formal refinement relationship between them. To understand why this is, we recall
that the part of the system modelled only concerns itself with the assignment of processors to
buffers and so does not model the actual transfer of information from slave to masters. Thus, the
values assigned to the status flags have no externally visible effect and all the machinations of
the state can be seen as purely an implementation bias in the model.

However, the four-buffer version is a refinement of the most abstract specification given earlier,
which gives another important reason for considering those abstractions. In particular, validations
of the abstract model will carry over to both the three and four buffer versions.

Of course, in this case, it is the internal properties of the model itself that are of interest, as it is
these properties that influence the "freshness" of the data read by the masters. In this respect,
the four buffer protocol is indeed better behaved as it would lead to a system where the delay in
information transfer is at worst equal to that of the three buffer version.

In the four buffer version of MSMIE, there is also an extra status possible for buffers. 0 is used
to denote a buffer that is still being read but no longer contains most up-to-date information.

Thus:

s as before. is a buffer that is reserved for writing
n as before, is a buffer that contains the latest data but is not being read (waiting for

read)

14

-

m is a buffer being read, (and the newest such)
o is a buffer being read (but there is also a newer one being read)

ms is the set of masters reading m
os is the set of masters reading o.

New masters are always assigned to the n or the m buffer. m buffers are "demoted" to 0 status
in a way that ensures that the 0 buffer will periodically become idle. In this way the protocol
avoids the "refresh" problems of the three-buffer version. Again detailed descriptions of the
mechanisms used to achieve this is given accompanying the formal text.

It might help to think of the status transitions i ---+ s ---+ n as the write phase of a buffer and the
transitions n ---+ m ---+ 0 ---+ i as the read phase. We will see that this variant of MSMIE always
has two buffers in write phase and two buffers in read phase.

•

5.1 Thestate

types

BName = {1,2,3,4}

state 174 of
s BName
n [BName]
m [BName]
o [BName]

ms MName-set
os MName-set

inv mk-E4(s, n, m, 0, ms, os) D,.
(m = nil {:} ms = { }) /\
(0 = nil {:} os = {}) /\
(ms n os = {}) /\
(nil-or-different([s, n, m, 0])) /\
(m = nil /\ n = nil ::::}0 = nil)

init 0"4 D,. 0"4 = mk-E4(1, nil, nil, nil, { }, { })
end

The last conjunct in the invariant, which rules out the states corresponding to {s,o,i,i}m, is the
result of the way that readers of m are released which, as in the earlier specifications, ensures
that there is always an m or an n buffer remaining.

15

-

Avalidation property for the state

The invariant only allows the following states corresponding to the following 7 combinations of
buffer status:

{s,i,i,i}m, {s,i,i,n}m, {s,i,i,m}m, {s.l.m.nj.,, {s,i,m,o }m, {s,i,n,o }m, {s.m.n.o};

5.2 The Operations

slave

slave 0
ext rd m, 0 [BName]

wr n [BName]
wr s BName

pre true

post n = s
As before the implementation will require access to m and 0 in order to be able to set a valid s.
That is:

s E BName - {n, m, 0}

This access requirement is recorded in the externals even though the predicates do not mention
m and o.

The descriptions of acquire and release, given via case analysis, are rather unwieldy. As different
variables change in the different cases, the operations have to have wide write access and hence
require a lot of clauses saying which variables do not change in that case. Thus we introduce a
notational shorthand used in postconditions to say that certain state components are unchanged':

Id : A* --+ B

Id(l) /;). Vi E inds l·l(i) = l(i)

2Note that this should be seen as a syntactic "macro", rather than an auxiliary function.

16

-

acquire

Acquire behaves in a manner very similar to before: a reader is assigned to either the n or the
m buffer as appropriate. The only extra consideration is in the case where there is an n buffer
waiting, an m buffer already being read, but no 0 buffer. In this case, where previously the new
reader would have been assigned to the m buffer, it is now possible to begin the read on the
n buffer, hence the improvement to the freshness of the data exchanged. The buffer that was
already being read is marked as 0, and correspondingly the record of processors reading that
buffer, ms, is moved to os; and the new read begins on the buffer that was n, thus making it into
a new m and the new reader is recorded in ms. No more masters will be assigned to the 0 buffer
until it has been through the write cycle again. •

acq (I: MName)
ext wr ms, os : MName-set

wr n, m, 0 : [BName]
pre 1 f/. ms U os A -, (n = nil A m = nil)

post (ms U os = ms U Os U {I}) A
(m = nil :::} m = n A n = nil A Id([o, os])) A
(m =f. nil A (0 =f. nil V n = nil) :::} Id([m, n, 0, os])) Aem =f. nil A0 = nil A n =f. nil

:::} 0 = m A m = n A n = nil A os = ms A ms = {I})

release

Release behaves exactly as before but with the extra case that it is possible to release a buffer
that is reading o. When the last 0 reader releases, the 0 buffer becomes idle.

rei (I: MName)
ext wr ms, os : MName-set

wr n, m, 0 : [BName]
pre 1 E ms U os
post ms U os = ms U Os - {I} A

({ I} ems:::} Id([m, n, 0, os])) A
({ I} = ms A n = nil :::} Id([o, os]) A n = m A m = nil) A
({I} =ms A 11: =f. nil :::} Id([n, 0, os]) A m = nil) A
({ I} C Os :::} Id([m, n, 0, ms])) A
({I} = Os :::} Id([m, n, ms]) A 0 = nil)

In fact, in several places, parts of acq and rel give more detail than is required. For example,
the last conjunct 0 = nil is redundant because we know os = {}. Similarly, the clause 0 = 0

17

-

implicit in the use of Id in the penultimate line is also redundant. As before, the redundant
clauses are left in for the sake of clarity.

Retrieve function

As stated earlier this version is a data refinement of themost abstract model. The retrieve function
is straightforward:

retr4_0 : 174-+ ~

retr4_o(mk-174(s, n, m, 0, ms, os)) 6.
mk-~(n = nil" m = nil" 0 = nil,ms Uos)

We have seen five specifications which exhibit the same external behaviour. All except for the
most abstract incorporate some degree of implementation bias. However, it is this very bias
that is the subject under investigation. In [BA92] validation conditions are expressed in the
modal p;-calculusthat describe somedesirable global properties of the protocol. For the purposes
of comparison of the two notations considered in this paper it is sufficient to note that neither
provides a formalism to express such conditions.

6 The specification using B

A similar series of specifications and refinements was constructed in B. In preference to present
ing this material in full, we present only those parts that highlight the notational and stylistic
differences between VDM and B which arose in this example.

This development was carried out using the current alpha-release of the B Toolkit [Abrial92a]'
Although this has meant that the specifications have been required to conform exactly to the
language supported by the machine', it has given us the advantages of automatic consistency
checking that the toolkit provides. In this paper, we present the B machines as they were entered
in the toolkit, though in some places syntactic sugaring may have made them more readily
digestible.

We first present the most abstract specification of MSMIE using B, as a machine bOo This
corresponds to the VDM specification with state o. The machine is parameterised by a set
MNAME of master names (assumed to be non-empty):

3In the VDM specifications, we have tried to follow the draft BSI standard as far as possible, but have allowed
at least one notational extension in the I d function in the previous section.

18

--

MACHINE

bO(MNAME)

The state consists of two variables:

VARIABLES

bO,
ms

•
Unlike VDM, the typing information for the state variables is given in the invariant. Here, the first
two clauses give "static" (decidable) typing, and the third clause gives subtyping information:

INVARIANT

bOE soot. 1\
ms E P(MNAME) 1\
(bO = FALSE =} ms = 0)

The initialisation is given as a generalised substitution:

INITIALISATION

bO:= FALSE II
ms:=0

At this level, the operations are very similar to the VDM ones presented earlier.

OPERATIONS

slave .:::..
bO:= TRUE;

acq(l1) ==
PRE

11 E MNAME 1\
bO= TRUE 1\
Il ¢ms

THEN
ms:= ms U {Il}

END;

19

rel(ll) :::.
PRE

11 E MNAME A
11 Ems

TIffiN
ms: = ms - {ll}

END

END

The major syntactic differences from VDM are that the types of the arguments are given explicitly
as predicates. Also, the read and write frames of the machine operations are implicit. The read
frames are always the full state of the machine, and the variables written are determined by the
generalised substitution (for example, those that appear on the left side of a simple substitution).
Framing is addressed further in the closing discussion. Thus, the operation slave writes bO, and
acquire and release write ms.

6.1 One buffer status

The first reification b1 of bO is presented as a B refinement. It corresponds to the VDM
specification with state 1. This highlights the fact that the B method makes a notational distinction
between refinements and other specifications.

REFINEMENT

REFINES

bO

SETS

STATUS = {SIl, SIN, SIM, SNM}

The new state also has two variables. By repeating the ms variable name, we are saying that the
variable is the same as the one in the abstract spec.

20

-

VARIABLES

bl,
ms

Reification is handled by giving an extension of the state and a coupling invariant that relates
the new components to the old, as for example in [Mor91]. State variables include those of the
abstract state and any added here. However, the variables of the abstract machine are subject
to full hiding, i.e. they cannot appear in definition of operations (unless they are explicitly
repeated, as is done with ms). The relationship between abstract and concrete variables is given
via a coupling relation. In this example, the coupling relation appears as the last conjunct of the
invariant:

•

INVARIANT

-G .
bl E STATUS /\ \ ~~ ~
ms = 0 ¢} (bl E {SIl, SIN}) /\ --_ ~~
(bO = FALSE ¢} (bl = SI!)) c_~

INITIALISATION

bl: = SII II
ms:=0

As in bO, the operations are similar to those of the corresponding VDM specification.

OPERATIONS

slave ==
bl E {SIl, SIN} ==} bl := SIN
[]
bl E {SIM, SNM} ==} bl := SNM;

$E.LKT~

21

acq(Il) .::.
PRE

Il E MNAME A
bi #- SII A
Il ¢ ms

TIffiN
ms: = ms U {Il}
II
IF ms =0 TIffiN

bl:= SIM
END

rel(ll) ==
PRE

Il E MNAME A
Il E ms

TIffiN
ms: = ms - {Il}
II

END
END

END

6.2 3 buffer status

-

Now we proceed with a refinement b2 of b1. This corresponds to the VDM specification with
state 2, i.e. our original specification. The data model (including the invariant) is similar to that
of the VDM specification, and the refinement coupling is similar to the retrieve function ret1'2.1.

REFINEMENT

b2(MNAME)

REFINES

bi

22

-

SETS

STATUSII = {S2, 12, N2, M2} I
VARIABLES

b2,
ms

INVARIANT •

/* typing */
b2 E seq(STATUSII) 1\
ms E P(MN AME) 1\
/* subtyping */
size(b2) = 3 1\
card(b21> {S2}) = 1 1\
card(b21>{M2})E{0, I} 1\
card(b21> {N2}) E {O, I} 1\
~ard(b21> {M2}) = 0 {:}(ms = 0V 1\
/* coupling */
((card(b21> {N2}) = 0 1\ card(b21> {M2}) = 0) {:} (bi = SII)) 1\
((card(b21> {N2}) = 1 1\ card(b21> {M2}) = 0) {:} (bi = SIN)) 1\
((card(b21> {N2}) = 0 1\ card(b21> {M2}) = 1) {:}(bi = SIM)) 1\
l(card(b2 I> {N2}) = 1 1\ card(b21> {M2}) = 1) ¢:} (bl = SNM))

INITIALISATION

b2:= [S2, 12, 12] II
ms:=0

23

-_

OPERATIONS

slave .::.
(/* Find a buffer that was N and set it to I */
@(zI).(zI E {I, 2, 3} 1\ b2(zI) = N2 ===} b2 := (b2 ~ {zI f-+ 12}))
[]
/* but if you can't find one that was N then don't worry */
Vz2.(z2 E {I, 2, 3} ::::}b2(z2) =f. N2) ===} skip

);
/* Then find a buffer that was S and set it to N

(there will be exactly one) */
@(z3).(z3 E {I, 2, 3} /\ b2(z3) = S2 ===} b2 := (b2 ~ {z3 f-+ N2}));
/* Then, find one that is I and set it to S

(there will be one or two of these) */
@(z4).(z4 E {I, 2, 3} 1\ b2(z4) = 12 ===} b2:= (b2 ~ {z4 f-+ S2}));

The notation "@(v).S", where v is a variable and S a generalised substitution, represents an
unbounded choice substitution. In the above it is used in conjunction with a guarded substitution,
in the form "@(v).(P(v) ===} S)"; this can be read operationally as, "if there is any v such that
P(v), then apply the substitution S for one such v".

Here we see a significant difference in style encouraged partly by the different treatment of
invariants in B and VDM and partly by the differences between the relational postconditions and
generalised substitutions. In B, the definition of an operation has to be strong enough to show
that the resultant state satisfies the invariant. In this example we have given a definition of slave
which provides more explicit algorithmic information than its VDM counterpart, giving it a more
"programmatic" flavour.

A similar change in style is reflected in the definitions of acquire and release, which for brevity
are not included here.

24

6.3 The "improved MSMIE" version

The following B machine snmo corresponds to the VDM specification of the 4-buffer MSMIE
solution. (The 3-buffer "inverted map" version has been omitted from this paper, because the
same issues arise with this machine.)

A major difference from the VDM version is that because the write frame is implicit there is no
need for the Id clauses that appear in the VDM version.

REFINEMENT

snmo(MNAME)

REFINES

bO

VARIABLES
•

sb, nb, mb, ob,
ms4, os4

INVARIANT

/* typing */
sb E 1 .. 4 1\
nb E seq(l .. 4) 1\
mb E seq(l .. 4) 1\
ob E seq(l .. 4) 1\
ms4 E P(MNAME) 1\
os4 E P(MNAME) 1\
r subtyping */
size(nb) E {a, I} 1\
size(mb) E {a, I} 1\
size(ob) E {a, I} 1\
(mb = []# (ms4 = 0) 1\
(gb = []¢:} (os4 = 0~ 1\
[sbJ 1= nb (\
[sb] i- mb 1\
[sb] i- ob (\
(nb = mb # (nb = [] 1\ mb = [])) 1\
(nb=ob#(nb=[] 1\ ob=[])) 1\
Gnb = ob # (mb = [] 1\ ob = [])') 1\
(mb = [] 1\ nb = []=9- ob = []) 1\
/* coupling */
ms = ms4 U os4 1\
~O=FALSE#(nb=[] 1\ mb=[] 1\ ob=[]))

25

INITIALISATION

sb:= I II
nb: = [] II
mb: = [] II
ob:= [] II
ms4:= 0 II
os4:= 0

OPERATIONS

slave .::::.
nb:=[sb] II
sb: E {I, 2, 3, 4} - {sb} - ran(mb) - ran(ob);

acq(l1) ==
PRE

11 E MNAME A
11 ¢ ms4 A
conc([nb, mb]) =f []

THEN
SELECT mb = [] THEN

mb:= nb II
nb:= [] II
ms4: = {ll}

WHEN mb =f [] A nb =f [] A ob = [] THEN
ob:= mb II
mb:= nb II
nb: = [] II
os4: = ms4 II
ms4: = {ll}

ELSE
ms4: = ms4 U {II}

26

END

-

rel(11) ==
PRE

11 E MNAME 1\
11 E ms4 U os4

TIffiN

SELECT { 11} C ms4 TIffiN
ms4:= ms4 - {II}

WHEN {11} = ms4 1\ nb = [] TIffiN

nb:= mb II
mb: = [] II
ms4: = ms4 - {II}

WHEN {II} = ms4 1\ nb #- [] TIffiN

mb: = [] II
m84:= m84 - {II}

WHEN { 11} C 084 TIffiN
084:= 084 - {II}

WHEN { 11} = 084 TIffiN

ob: = [] II
084:= 084 - {ll}

•

END
END

END

7 Discussion

As stated in the introduction, this example highlights three areas where the notations encourage
different approaches. This closing section gives a brief discussion of some of the points that
arose from our study of the MSMIE protocol.

Invariants

In both notations, the invariant is useful for quickly conveying an understanding of the reachable
values of the state. However the use of invariants in operation definitions differs. In B,
postconditions (in the form of generalised substitutions) have to be written as to ensure the
maintenance of the invariant. In VDM the state invariant is effectively part of the state typing
information, and as such is assumed to be maintained in addition to the postcondition.

VDM's implicit maintenance of the invariant led to the choice discussed earlier of how much
of the information in the invariant is repeated in a postcondition. There was often some tension

27

between the most concise form that relied on properties of the invariant for its correctness, and
a longer, but more explicit form, that included some redundant information. This choice can be
seen as an opportunity to prove the stronger forms from the weaker. Which form is chosen may
make a significant difference to the complexity of the proofs: the form that most clearly conveys
the information may not be the form that will be most usable in proofs. Indeed, the stronger form
is more likely to be helpful when the specification is being proved to be a reification of another,
and the weaker form when it is itself being reified.

In the B notation, on the other hand, one always has to write operations that imply the preservation
of the invariant. This may encourage a tendency to describe how the invariant is maintained,
which may lead to less abstract specifications.

Operation definitions

The greater programmatic feel of the B notation is reinforced by the use of generalised sub
stitutions, as opposed to YOM's relational post-conditions. Although the two forms have the
same expressive power, in some cases (as for example in slave in the b2 machine) we found
it convenient to give greater algorithmic detail in the B version. This would appear to imply
that the B notation is more useful for the development of algorithms. Indeed, the process of
operation decomposition has been given greater attention in the B methodology than for YOM.
By contrast, perhaps YOM's relational postconditions give a greater facility for non-algorithmic
specifications of complex operations.

Framing

As stated earlier, the read and write frames are given explicitly in a VDM operation, whereas in
B the variable access and modification is implicit in the form of the generalised substitution.

In VDM operations, the semantic role of the read frame is often underplayed. Typically, it is
interpreted as merely providing syntactic scoping for variables appearing in the precondition or
postcondition. Alternatively, it could be interpreted as a constraint on implementations, restricting
which state components can be read. Thus rather than think of the externals clauses as giving
information about the variables mentioned in the specification, we see them as giving details of
what access to state variables an implementation of that operation can be allowed to make. (See
[Bic92] for further discussion of this point.)

In B, similar restrictions can be given through the hiding principles inherent in the different forms
of machine structuring. For instance in this example, where we were able to narrow the read
frames in the later VDM specifications, in the B counterparts there is a potential to structure the
overall machine as a B "implementation" in terms of simpler machines (one for each status flag).

28

-

In the above we have emphasised three areas where our experiments have suggested that the
notations of VDM and B encourage different specification styles. Each style may have its own
advantages at different stages of the development process. In this example we found that the
process of developing implementation code was better addressed in B's abstract machine nota
tion. However, we also found VDM's relational postconditions more convenient for expressing
wholly implicit specifications of operations, particularly when the data model involved complex
interdependencies.

References
•

[Abrial92a] Abrial, J.R. IntroducingB-Technologies (draft). May 1992.

[AbriaI92b] Abrial, J.R. The B Method. Book to appear

[BA91] Bruns, G. and Anderson, S., The Formalization of a Communications Protocol.
LFCS TR 91-137 (April 1991).

[BA92] Bruns, G. and Anderson, S., The Formalization of a Communications Protocol.
LFCS/Adelard TR. Safety-Critical Computer Systems, April 6, 1992.

[Bic93] Bicarregui, J.C. Algorithm refinement with read and write frames, in: Wood
cock, J.C.P and Larsen, P.G., FME'93: Industrial-Strength Formal Methods,
Springer-Verlag, 1993.

[BR93] Bicarregui, J.C. and Ritchie, B. Invariants, Frames and Postconditions: a Compari
son of the VDM and B Notations, in: Woodcock, J.C.P and Larsen, P.G., FME'93:
Industrial-Strength Formal Methods, Springer-Verlag, 1993.

[Jones90] Jones, C.B. Systematic SoftwareDevelopment UsingVDM,second edition. Prentice
Hall,1990.

[Mor91] Morgan, C. Programmingfrom Specifications. Prentice Hall, 1990.

[MSMIE] L.L. Santoline et al. Multiprocessor Shared-Memory Information Exchange. IEEE
Transactions on Nuclear Science. Vo1.36.No.1, Feb 1989.pp. 626-633.

29

