
CLRC

The MIDAS SDAI Implementation

o Thomas and C Greenough

July 1996

Technical Report
RAL-TR-96-043

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

MIDAS SDAI implementation

Mrs D Thomas and Dr C Greenough

February 1996

Abstract

This report describes the implementation of the STEP Standard Data Access Interface (SDAI) used within the
EC Project MIDAS.

MIDAS (ESPRIT project 7294) was a three year project which brought together the software from different
vendors in the areas of solid modelling, advanced mesh generation, stress analysis and electromagnetic analysis
to provide an integrated suite of software with a common user interface and a common database. The common
data management and exchange mechanism was based on the STEP technology.

STEP is now starting to be used as an integration tool between CAD applications. Electromagnetic analysis is
not covered presently by STl'::Pbut the existing models and methodology can be used and extended into this
area.

Part of the STEP methodology includes the definition of a STEP Data Access Interface (SDAI) and how the
STEP information models can be accessed in a common database using this interface.

The reports describes how a C late binding SDAI has been implemented on top of the DEVAdatabase in order
to access the STEP compatible data models defined within the MIDAS project for electromagnetic analysis.

Mathematical Software Group
Advanced Interactive Systems Division
Rutherford Appleton Laboratory
Chilton, Didcot
Oxfordshire OX11 OQX

Contents

1 Introduction 1

2 DEVADatabase .. 1

3 STEP Overview. . 1

4 Implementation Overview 2

5 SDAI Header File. 3
5.1 Extracts from sdai.h . 3
5.2 Extracts from sdai.deva.h 4

6 General Concepts. . . . 5
6.1 Global identifiers 5
6.2 Concept mappings . 7
6.3 Basic types. 7
6.4 Aggregates. 8
6.5 Implementation type . 8

7 New DEVARoutines .. 9
7.1 deva.get.attr .name . 9
7.2 deva.get.attr .num 9
7.3 deva.get.attr .type . 9
7.4 deva.get.aggr.Iim . 9
7.5 deva.get.aggr.type . 10
7.6 deva.get.array . 10
7.7 deva.put.array . . 10
7.8 deva.q.u.name .. 10
7.9 deva.put.entity .id 10
7.10 deva.put.attribute 10
7.11 deva.get.attribute 11

8 C Late Binding Routines . 11
8.1 Open Session (6.1.1) 12
8.2 Error Query (6.1.3.1) 12
8.3 Record event (6.2.1) 12
8.4 Close session (6.2.3) 12
8.5 Open repository (6.2.4) 13
8.6 Create non-persistent list (6.2.8) 13
8.7 Delete non-persistent list (6.2.9) 13
8.8 SDAI query (6.2.10) 13
8.9 Delete non-persistent list (6.11.2.1) . 13
8.10 Create ADB (6.2.12.1) .. 13
8.11 Get ADB value (6.2.12.2) . 14
8.12 Put ADB value (6.2.12.3) . 14
8.13 Get ADB type (6.2.12.4) 14

8.14 Delete ADB (6.2.12.5)
8.15 Create schema instance (6.3.1)
8.16 Add SDAI-model (6.3.2) ...
8.17 Remove SDAI-model (6.3.3) .
8.18 Delete schema instance (6.3.4) .
8.19 Create SDAI-model (6.4.1)
8.20 Close repository (6.4.2) .
8.21 Get schema definition (6.4.3.1) .
8.22 Get schema instance (6.4.3.2) .
8.23 Delete SDAI-model (6.5.1) .
8.24 Rename SDAI-model (6.5.2) .
8.25 Start SDAI-model access (6.5.3)
8.26 Promote SDAI-model to read-write access (6.5.4)
8.27 End SDAI-model access (6.5.5).
8.28 Get entity definition (6.5.6) .
8.29 Create entity instance (6.5.7) .
8.30 Undo changes (6.5.8)
8.31 Save changes (6.5.9)
8.32 Create complex entity instance (6.5.10.1) .
8.33 Get entity extent (6.5.10.2) .
8.34 Type operations (6.7)
8.35 Get attribute definition (6.7.5.1) .
8.36 Get attribute (6.8.1) .
8.37 Test attribute (6.8.2).
8.38 Find entity instance SDAI-model (6.8.3)
8.39 Get instance type (6.8.4) .
8.40 Is instance of (6.8.5) . .
8.41 Is kind of (6.8.6) .
8.42 Is SDAI kind of (6.8.7)
8.43 Find entity instance users (6.8.8)
8.44 Get attributes (6.8.9.1) .
8.45 Get all attributes (6.8.9.2) .
8.46 Copy application instance in same SDAI-model (6.9.1)
8.47 Copy application instance to other SDAI-model (6.9.2)
8.48 Delete application instance (6.9.3)
8.49 Put attribute (6.9.4) .
8.50 Unset attribute value (6.9.5). .. 24
8.51 Create aggregate instance (6.9.6) . " 24
8.52 Get persistent label (6.9.7) 24
8.53 Get session identifier (6.9.8) 24
8.54 Put attributes (6.9.19.1) . 24
8.55 Put all attributes (6.9.19.2) .. 25
8.56 Get member count(6. 10.1)
8.57 Is member (6.10.2)
8.58 Create iterator (6.10.3) .

ii

14
14
14
14
14
15
15
15
15
16
16
16
16
17
17
17
18
18
18
18
19
19
19
20
20
20
21
21
21
21
22
22
23
23
23
23

25
25
26

8.59 Delete iterator (6.10.4)
8.60 Beginning (6.10.5) ..
8.61 Next (6.10.6)
8.62 Get current member by iterator (6.10.7) .
8.63 Application instance aggregate operations (6.11) .
8.64 Application instance unordered collection operations (6.12)
8.65 Indexed get aggregate member (6.13.1) .
8.66 End (6.13.2) .
8.67 Previous (6.13.3) .
8.68 Indexed put aggregate member (6.14.1) .
8.69 Indexed create nested aggregate instance (6.14.2)
8.70 Entity instance array operations (6.15) .
8.71 Application instance array operations (6.16) .
8.72 Application instance list operations (6.17) .
8.73 C late binding specific type path operations (6.18)

26
26
26
26
26
26
26
27
27
27
27
28
28
28
28

29A Implementation classes.

iii

1 Introduction

The International Standard for data exchange ISO 10303, known as STEP, is now starting to be used
as an integration tool between CAD applications. Electromagnetic analysis is not covered presently
by STEP but the existing models and methodology can be used and extended into this area.

Part of the STEP methodology includes the definition of a STEP Data Access Interface (SDAI)
[6] and how the STEP informationmodels can be accessed in a common database using this interface.
This reports describes how a C late binding SDAI [5] has been implemented on top of the DEVA
database in order to access the STEP compatible data models previously defined within the MIDAS
project [1] [2].

2 DEVADatabase

The database which was used by the MIDAS environment was called DEVA. DEVA provides a
database management system, 110 control and a data access interface. A prototype version of DEVA
was written at Rutherford Appleton Laboratory under the ESPRIT II program, Project 5172(IDAM)
and has been developed further under MIDAS Project to meet the needs of the MIDAS Environment.

Oneof the first tasks undertaken inMIDASwas to enhanceDEVAto run as a client/server database.
In this mode a server database is initiated on any accessible machine. This server is then available
for any application to act as a client and to access the data. Each application may perform various
actions i.e. place data, retrieve data, save datasets and rollback, via function calls. When application
processes are closed the server database remains active until explicitly closed.

Like any other database, the DEVAdatabase needs a schema which describes the data to be stored
and accessed. DEVAis STEP compatible because it uses as a starting point the entity definitions of the
Application Protocols and Integrated Resource Models of STEP.MIDAS has added to and modified
the STEP EXPRESS descriptions to meet the requirements of electromagnetic applications.

DEVAis closely linked to the EXPRESS compiler 'EX' whichwas developed in the IDAM project.
One of the outputs from EX is a Keyword Definition File (KDF) which forms the basis of the DEVA
data"dictionary. Additional information is required by the DEVAdatabase about block sizes and array
bounds.

DEVAoriginally had its own subroutine interface but this has now been replaced by a subset of a
C late binding SDAI.

3 STEP Overview

ISO 10303, known informally as STEP (STandard for Exchange of Product model data), is an Inter
national Standard for the computer-interpretable representation and exchange of product data. The
objective is to provide a neutral mechanism capable of describing product data throughout the life
cycle of a product independent from any particular system. The nature of this description makes it
suitable not only for neutral file exchange, but also as a basis for implementing and sharing product
databases and archiving.

Information models are defined using the formally defined data specification language, EXPRESS
[3], which was developed as part of STEP.

Implementationmethods are also defined as part of STEP,these are:

1

physical file: sequential, free format file exchange [4]. Defines the mapping from EXPRESS to the
physical file. The syntax is defined in Wirth Syntax Notation (WSN).

SDAI: Standarddata access interface [6]. Formal specificationof the interface between an application
and instances of data in a form specified by an EXPRESS schema. The data may be stored in
a database, a file or an in-memory working form. This specification is independent of any
implementation language.

late bindings: specification of the SDAI for specific target languages which is independent of the
EXPRESS schema being implemented. Currently being defined for C.

early bindings: specification of the SDAI for specific target languages which is dependent on the
EXPRESS schema being implemented. Currently being defined for C++

The way that information models are implemented into a specific type of database will not be defined
in STEP,only the interface to access the data conforming to the model.

4 Implementation Overview

ISO 10303 Part 22 [6], which defines the STEP Standard Data Access Interface, also specifies the
possible implementation classes to which an SDAI implementationmust conform. The MIDAS SDAI
satisfiesmany of the requirements of a Class 1 implementation. This supports:

• Level I of transaction support. This level consists of an implementation providing no support
of the session transaction operations nor the SDAI-model save and undo operations.

• Level I of expression evaluation support. This level consists of all validation operations always
returning UNKNOWN as their result and support only for Get of derived attributes defined in
the SDAI session schema and no support required for any access to the SDAI dictionary entity
instances. Constraints defined in SDAI session schema are enforced at all times regardless of
support for the validation operations.

• Levell of session record support. This level consists of no support for the session event recording
function. At this level of support, no instances of the error _event entity type are created,the
sdaLsession. errors list is always empty and session. recording_acti ve is al
ways FALSE.

• Level I of scope support. This level consists of no support for the scope operations.

• Level I of domain equivalence support. This level consists of no support for the declaration
of domain equivalent entity types and their use by application instances based upon different
schema definitions.

Annex I gives the operations required by implementation class.
The files that make up the DEVA software are organised into several directories. The directories

Clients, Server and Alonecontain routines which are specific to the client, server and stand
alone versions of DEVArespectively. All of the header files are in a directory called Include. The
directory Library contains all the routines which are common to both versions of DEVA.As many
of the routines as possible are placed in the Library directory to ensure consistency and ease of
maintenance.

2

The SDAI functions have been added to the Library directory as they have been made common
between both versions of DEVA. This has been made possible by ensuring that no SDAI routines
access the DEVAdatabase directly. The only access is made through DEVAroutines. Thus the SDAI
forms a separate layer sitting above the DEVAinterface level.

Only a few changes have been made to the existing DEVA routines. Where the SDAI routines
could not be based upon existing DEVA routines then new DEVAroutines have been designed and
written for both versions and placed in the relevant directories. These new routines are described in
detail in Section 7.

A testbed program has been designed and written. This serves to test out the newDEVAand SDAI
routines as they are implemented and may also be used as an example program for new users of the
SDAI.

5 SDAI Header File

There is a C late binding header file called <sdai .h> which is included as an Annex to Part 24.
Parts of this header file are necessary to understanding the function prototypes given in a later section
so the relevant parts are reproduced here. In addition, some ofthe types are deliberately left undefined
as they are intended to be implementation dependent. The MIDAS definitions of these are given in a
separate file called <sdaLdeva. h>which is also given below.

5.1 Extracts from sdai.h

/*** Constant declarations ***/

/* LOGICAL and BOOLEAN value elements: */

#definesdaiFALSE 0
#definesdaiTRUE 1
#definesdaiUNKNOWN 2

/*** Type declarations ***/

typedef unsigned char SdaiBiti
/* C late binding primitive data types: */
typedef long Sdailntegeri
typedef double
typedef int

SdaiReali
SdaiBooleani

typedef int SdaiLogicali
typedef char *SdaiStringi
typedef SdaiBit *SdaiBinarYi
/* enumeration data type:
typedef char *SdaiEnumi
/* aggregate data types:
typedef SdaiAggrld SdaiAggri

*/

*/

typedef SdaiAggr

typedef SdaiAggr
SdaiOrderedAggri
SdaiUnorderedAggri

typedef SdaiOrderedAggr SdaiArraYi

3

typedef SdaiOrderedAggr SdaiListi

typedef SdaiUnorderedAggr SdaiSeti

typedef SdaiUnorderedAggr SdaiBagi

/* entity instance identifier type:
typedef Sdaild Sdailnstance

/* SOAI instance identifier types:

*/

*/

typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance
typedef SdaiAttr
typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance
typedef Sdailnstance

SdaiApplnstance;
SdaiModel;
SdaiRepi
SdaiSession;
SdaiAttri
SdaiExplicitAttr;
SdaiEntitYi
SdaiWhereRulei
SdaiuniRulei
SdaiGlobalRule;
SdaiSchemai
SdaiScopei
SdaiSchemalnstance;

typedef Sdailnstance SdaiTrxi
/* SOAI iterator identifiertype:
typedef Sdailtrld Sdailterator;
/* access mode data type:
typedef enum {sdaiRO, sdaiRW) SdaiAccessMode;
/* C late binding AOB identifiertype:
typedef SdaiADBld SdaiAOBi
/* attribute type data type: */
typedef enum {

sdaiADB, sdaiAGGR, sdaiBOOLEAN, sdaiBINARY, sdaiENUM,
sdaiINSTANCE, sdaiINTEGER, sdaiLOGICAL, sdaiNOTYPE,

*/

*/

*/

sdaiREAL, sdaiSTRING
} SdaiPrimitiveType;

/* error code data type:
typedef SdaiErrorld

*/

SdaiErrorCode;
/* error handler data type:
typedef void (*SdaiErrorHandler)(SdaiErrorCode)i
/* transaction commit mode data type:
typedef enum {sdaiCOMMIT, sdaiABORT} SdaiCommitMode;

*/

*/

5.2 Extracts from sdaLdeva.h

struct Sdaild {

int type; /*
int ds; /*
int ent_typei /*
int idi /*

} i

struct SdaiAggrld {

number from 1 to 7*/
dataset number for entity ids, else 0 */
entity type number for entity ids, else 0 */
instance number dependent on type */

int level; /* aggregate level = 1 for 10 aggregates*/

4

int ds; /* dataset number*/

int ent_type; /* entity type number*/

int id; /* entity instance number */

int attr; /* attribute number */
} ;

struct ModelTable {
int id; /* SDAI-model instance number */
char name[MAXNAMESZ]; /* name of SDAI-model */
int status; /* =0 when created =1 when exported ?? */

} ;

struct ArrayStore {
struct SdaiAggrld id;
int highest; /* highest index actually stored */
int length; /* length of array values type */
char * values; /* pointer to buffer of values */

};

/* Type definitionsfor global variables used in sdai.c and sdai_deva.c */
typedef int SdaiErrorld;
#defineSDAI_REF_IS struct Sdaild
#defineMAX_DATASETS 10
extern SdaiErrorld errorcode;
extern int highest_model;
extern struct ModelTable models[MAX_DATASETS];
extern struct ArrayStore putarray;
extern struct ArrayStore getarray;

/* Function prototypes for the functions in sdai_deva.c */
struct Sdaild get_sdai_id(int type, int instance_no);
struct Sdaild deva_to_sdai(struct Inst_Id deva_id);
struct Inst_Id sdai_to_deva(struct Sdaild ent_id);
struct Inst_Id aggr_to_deva(struct SdaiAggrld aggr_id);
struct SdaiAggrld get_aggr_id(struct Sdaild sdai_id, int level,

int attrnum);
int get_session_id(void);
int cmp_aggr_id(struct SdaiAggrld aggr_id_1, struct SdaiAggrld aggr_id_2);
int put_array();

6 General Concepts

This section details some implementation issues which are general to more than one of the elate
binding SDAI functions.

6.1 Global identifiers

The SDAI assumes that the database can provide identifiers for several types of instances of informa
tion. These must be unique over all the instances in the database during a session. This identifier is

5

provided to the application via SDAI routines. The application then uses the identifier in further SDAI

calls.
In the header file all of the relevant types are defined to be of type Sdailnstance which is itself

defined to be of type Sdaild. Sdaild is an implementation specific handle. The handle serves as
the identifier of the instance. Identifiers are not persistent. Identifiers shall be unique globally over all
types of instances and unchanging within a simple session for any particular instance.

It is proposed to compose an Sdaild from four specific DEVAidentifiers. This composition will
then ensure global uniqueness of all SDAI identifiers. The four integers which are used to form the
unique identifier for each SDAI type are as follows:

1. SDAI type - this is an integer giving the type of the SDAI entity. The value for each type is:

• SdaiApplns tance - 1

• SdaiModel -2

• SdaiRep - 3

• SdaiSession - 4

• SdaiAt tr - 5

• SdaiEnti ty - 6

• SdaiSchema-7

2. DEVAdataset number - only for application instances ie. Type 1, for other types this is set to
zero.

3. DEVAentity type number - only for application instances ie. Type 1, for other types this is set
to zero.

4. instance number - an identifying number which is unique within that type. The meaning of this
number for each type is:

• SdaiApplns tance -DEVAentity identifier

• SdaiModel -dataset number

• SdaiRep - repository number

• SdaiSession - session number

• SdaiAttr - attribute number (order in EXPRESS model)

• SdaiEnti ty -DEVAentity type number

• Sdaischema - schema number

The problem is that if the identifier is generated from combining four integers of unknown size
then the result could be too big for a single integer variable. Three possible solutions are:

1. Make the identifier a structure and store the four integers separately. This has the advantage of
being easy to generate and separate but is difficult for the application to do comparisons with. If
the application simply receives the id from one routine and passes it on to another routine then
it could be sufficient.

6

2. Make the identifier of type char * and store the four integers separated by a non-numeric
character, for example '.'. This is easy to generate and fairly easy to separate although not as
easy as 1. It is easier for the application to deal with a single variable for comparisons but string
comparisons will be necessary.

3. Make the identifier of type into Combine the four integers together and apply a hashing
algorithm to compress the number into a single integer. This results in a single integer identifier
which is easy for the application to deal with but a routine will always be needed to generate
and separate it.

The initial implementationwill use solution 1. The structurechosen is included in<sdaLdeva. h>
as given above.

6.2 Concept mappings

There are more levels in the SOAI than inOEVA.The following is an attempt to match SOAI concepts
to those present in OEVA.

• Session: The set of operations that occur between the initiation and termination of the use of an
SOAI implementation by one application.

There will be one single session in the initial SOAI implementation. There is no comparable
concept in OEVA so the session will exist in the SOAI layer. When the session is opened a
predefined session identifier will be allocated and several global variables will be initialised.

• Repository: Repositories are data storage facilities. A repository may be implemented in
memory, as a single database, multiple databases, a single file, a collection of files, or any other
method. Multiple repositories may be opened in a single session.

For the MIDAS SOAI implementation it will be possible to open one repository in a session.
When OEVA is initialised in reads a single schema into its data dictionary. It is not possible
to change this data dictionary during that run of OEVA.When an SOAI repository is opened
this will have the effect of initialising OEVAand reading in a data dictionary. The name of the
repository will be used for the name of the data dictionary file to be read in.

• Schemainstance: Schema instances are logical collections of SOAI-models from which a set
of entity instances can be derived. This set of entity instances defines the domain over which
references between entity instances and global rule validation are supported. Schema instances
must be created within a repository.

These are not implemented in OEVA and are not necessary in the SOAI. They will not be
implemented.

• SDAI-model: Entity instances are created within SOAI-models which must be created within
a repository. The entity instances making up each SOAI-model are based on a single EXPRESS
schema. One SOAI-may be associated with more than one schema instance.

A single SOAI-model will be mapped to a single OEVAdataset.

6.3 Basic types

The following table shows the mapping between SOAI types, OEVAtypes and basic C types.

7

SDAI Ctype DEVA Ctype

Sdailnteger long BIG.1NT long

SdaiReal double BIG_REAL double

SdaiBoolean int BOOLEAN unsigned char

SdaiLogical int LOGICAL unsigned char

SdaiString char* VLEN_THING char*

SdaiEnum char* ENUM_REF unsigned int

Table 1: SOAI and OEVA type mappings

6.4 Aggregates

OEVA currently only deals with arrays and lists of a fixed length (they get treated like arrays). It does
not deal with sets, bags or lists of variable length. An array is stored and extracted by casting the array
as a char* and treating it like any other attribute, ie. storing the array with its values along with the
other attribute values for an entity instance. Arrays can only be stored and extracted as a complete
block not as individual values.There are no specific routines for arrays.

The SOAI treats aggregates differently from other attributes. The aggregate has its own unique
identifier and is stored separately from the entity instance. The relevant attribute of the entity instance
contains a pointer to the aggregate instance. Values are placed into and extracted from the array
individually.

To enable this SOAI functionality to be built on top ofOEVA, the SDAI interface layer manages the
array values in local dynamically allocated storage. This enables values to be put and got individually
by the SOAI but as a whole array within DEVA.

Consider first an array that is present in the OEVA database. The first time that a SOAI routine
attempts to access the array, sufficient local storage is obtained to store the whole array which is then

. copied from the OEVA database into the local memory. This is called getarray. It is most likely
that the next routine will ask for another value from the same array and in this case the value is simply
obtained from local storage without the need to access the database. The array continues to reside in
local memory until a read request is received for a different array when the local memory is released
and fresh memory obtained for the new array.

Considering an array that is having values set in the database by the SOAI. The first time that a
value is set in an array, enough local memory is obtained for the whole array. The value is written into
this local memory and not into the database. This array is called putarray.It is most likely that the
next value to be set will also be for this same array and in which case the value may be written straight
into the local storage. This continues until either a routine wants to write a value into a different array
in which case the whole array is then down-loaded to the OEVA database, the memory released and
fresh memory obtained for the new array, or a routine wants to read a value from the current array in
which case the array is both down-loaded to the database and transferred to the 'getarray' storage.

6.5 Implementation type

Implementations either support SOAI-model Save and Undo operations or Commit and Abort trans
actions. The DEVA SDAI will support Save and Undo.

8

7 New DEVARoutines

The following new DEVA routines have been implemented. They were all necessary to provide
functionality needed by the SDAI which was not available from existing DEVAroutines.

It was necessary for the SDAI to have the name of the attributes as given in the EXPRESS data
model available in the database data dictionary. At the start of MIDAS, DEVA stored entity names
but not attribute names. Therefore, EX has been extended to add attribute names from the EXPRESS
data model when outputting a DEVA data dictionary file. DEVA has also been modified so that it
now reads in this attribute name and stores in an extended version of the attribute structure in the data
dictionary. This then enabled the following new routines which use attribute name to be written.

7.1 deva.get.attr .name

int deva_get..attr..name(charent..name[], int attr..number,char * attr..name)

This routine gets the name of an attribute given the entity name and the attribute number. The number
of the attribute is taken from the order of attributes as given in the EXPRESS model with the first
having number O.

7.2 deva.get.attr .num

int deva_get..attr..num(intindex, char * attr..name,int * attr..num)

This routine gets the number of an attribute given the entity index and the attribute name. The number
of the attribute is taken from the order of attributes as given in the EXPRESS model with the first
having number O. The first argument should be the index of the EXPRESS entity. This can be obtained
from the entity name by calling the DEVAroutine deve..q.at.o i..

7.3 deva.get.attr .type

int deva.get.attr.typefint index, int attr..number,int * attr.type)

This routine gets the type of an attribute given the entity index and the attribute number. The number
of the attribute is taken from the order of attributes as given in the EXPRESS model with the first
having number O. The first argument should be the index of the EXPRESS entity. This can be obtained
from the entity name by calling the DEVAroutine deva_q_atoi.

7.4 deva.get.aggr .Jlm

int deva.get.aggr.limiint index, int attr..number,int * limit)

This routine gets the limit of a single level array or list given the entity index and the attribute number.
The number of the attribute is taken from the order of attributes as given in the EXPRESS model with
the first having number O. The size of the array or list as given in the data dictionary is returned in
limit. Only one number is stored in the data dictionary so an array of dimension [5:9] will have limit
4. For a list the limit is the maximum size of the list.

9

7.5 deva.get.aggr .type

int deva.get.aggr.typetint index, int attr.number, int * type)

This routine gets the type of the elements of a single level array or list given the entity index and the
attribute number. The number of the attribute is taken from the order of attributes as given in the
EXPRESS model with the first having number O. The type of the elements or the array or list as given
in the data dictionary is returned in type.

7.6 deva.get.array

int deva.get.arraytstruct Inst..Id id, int attrnum, int * maxsize, void * attrp)

This routine gets a copy of all the values in an array for a specified attribute of a specified entity instance
when that attribute is of type ARRAY. The maximum size of the array is returned in Mmaxs i ze. The
array is returned in attrp which should be cast as (char*) by the caller.

7.7 deva.put.array

int deva.put.array/struct Inst..Id id, int attrnum, int put..size, void * attrp)

This routine sets the value for a number of members in an array for a specified attribute of a specified
entity instance when that attribute is of type ARRAY. The third argument is the size of the array in
bytes, this allows less than the maximum size of the array to be put. The array of values should be
given in the final argument and cast as (char*) by the caller.

7.S deva.q.u.name

int deva.q.u.namerint index, int attr.number, char * enum.name)

This routine gets the enumeration name of an attribute which is of type enumeration given the entity
index and the attribute number. The number of the attribute is taken from the order of attributes as
given in the EXPRESS model with the first having number O. The first argument should be the index
of the EXPRESS entity. This can be obtained from the entity name by calling the DEVA routine
deva.q.at.o i..

7.9 deva.put.entity Jd

int deva.put.entity .idtstruct Inst..Id id)

This routine creates an entity instance with no attribute values.

7.10 deva.put.attribute

int deva.put.attributetstruct Inst..Id id, int attrnum, int type, void* attrp)

This routine is adapted from the original DEVA routine deva.put ient i.ty which put values for all
attributes into an entity instance. deva_put-attribute sets a value for a single attribute of an
entity instance.

10

The first two arguments are the instance identifier of the entity instance and the attribute number
which is being set. The third argument is the type of the attribute which is one of the DEVA types
given in the Table 1 in Section 6.4.

The final argument is the value of the attribute which is of the appropriate type but must be cast to
a void*.

7.11 deva.get.attrlbute

int deva..get..attribute(structInst.Id id, int attrnum, int * type, void* attrp)

This routine is adapted from the original DEVAroutine deva_geLentity which got values for all
attributes from an entity instance. deva.put.catt r Lbut;e gets a value for a single attribute of an
entity instance.

The first two arguments are the instance identifier of the entity instance and the attribute number
which is being set. The third argument returns the type of the attribute which is one of the DEVA
types given in the Table 1 in Section 6.4.

The final argument should be a variable of the appropriate type which should be cast to void*
and will be filled with the value of the attribute.

8 C Late Binding Routines

This section lists each C function defined in STEP Part 24 [5] which is required for implementation
Class 1. Some of the functions given in Part 24 are specific to the C late binding and are not based on
Part 22 [6], these functions are only included below if it is considered that they would be useful for
the MIDAS SDAI.

For each function the following information is given if relevant:

• C function prototype

• priority of implementation within the MIDAS project. The priority numbers have the following
meanings:

1. Of top priority (Priority 1), these will be the first routines to be implemented for the first
release of the SDAI

2. Of medium priority (Priority 2), will be implemented in the second release of the SDAI.

3. Of low priority (Priority 3)

4. Routine not needed for the MIDAS project, will not be implemented (Priority 4) (In this
case the following information will not be given)

• input, output and return values for the function

• effect on SDAI environment, only a relevant subset is given

• mappings to relevant DEVAfunctions and variables

.• problem areas

11

8.1 Open Session (6.1.1)

This operation initiates the SDAI implementation and commences a new SDAI session.

SdaiSessionsdaiOpenSession(void);

Priority: 1

Return: session instance identifier

Effect: An instance of sdaLsession is created. An instance of implementation is created. The
known.aer-vers attribute shall be initialised with a set instance whose members are the
instances of sdaLrepos i tory available to the application for this session.

Status: Implemented. For the first release of the MIDAS SDAI there is a single session with a
predefined identifier. When this routine is called it initialises several global variables, for
example, errore ode is set to SdaiNO_ERR

8.2 Error Query (6.1.3.1)

SdaiErrorCodesdaiErrorQuery(void);

Priority: 2

Return: The error code stored in the conceptual single valued error buffer.

Status: This has been implemented by using a single external integer variable called errore ode.
The definitionof this is included in the additional header file sdaLdeva .h. Implemented and
tested.

8.3 Record event (6.2.1)

. Priority: 4

8.4 Close session (6.2.3)

This function shall terminate the current SDAI session. It sets the error indicator to tt sdaiSS_NOPN.
After invoking this function, subsequent C late binding function calls shall no longer be operating in
an SDAI environment. All instance identifiers shall no longer be valid once the session is closed.

voidsdaiCloseSession(SdaiSessionsession);

Priority: 1

Status: Not implemented. Active sdai..models should be returned to an appropriate state before
terminating.

12

8.5 Open repository (6.2.4)

The OpenRepository function shall make the repository and its SDAI-models available to the session.

SdaiRep sdaiOpenRepository (SdaiSession session, SdaiRep repository);

SdaiRep sdaiOpenRepositoryBN (SdaiSession session, SdaiString repositoryName);

Priority: 1

Input:

session - identifier of the session in which the repository is to be opened

repository -depository identifier

reposi toryName- repository name

Return:

repos i tory instance identifier

Status: Implemented. For the firstrelease of theMIDAS SDAI there will only be repository available.
deva.Lni t is called using the repository name as the name of the data dictionary file to be
opened.

8.6 Create non-persistent list (6.2.8)

This function creates a non-bounded, non-persistent list (NPL) as a container of entity instances. It is
the intention that NPLs are possibly to access by any C late binding function which has a parameter
ofthe type SdaiList.

Priority: 4

8.7 Delete non-persistent list (6.2.9)

Priority: 4

8.8 SDAI query (6.2.10)

This function determines those entity instances from a NPL, which meet a specified criteria and puts
them to the result NPL. The criteria for this function are limited to a subset of EXPRESS expressions.

Priority: 4

8.9 Delete non-persistent list (6.11.2.1)

Priority: 4

8.10 Create ADD (6.2.12.1)

An ADB is an Attribute Data Block. This is needed for sdaiPutAIIAttrs.

Priority: 2

13

8.11 Get ADB value (6.2.12.2)

This function is needed to get the values out of the ADB set passed to the SDAI by the routine

sdaiGetAIIAttrs.

void *sdaiGetADBValue(SdaiADB block, SdaiPrimitiveType valueType, void *value);

Priority: 2

Input:

block - attribute data block containing the data to be retrieved

valueType - type of value

value -handle matching or convertible to the valueType

Output:

value - the handle filled with the primitive or identifier value retrieved from the ADB

8.12 Put ADB value (6.2.12.3)

Priority: 2

8.13 Get ADB type (6.2.12.4)

Priority: 2

8.14 Delete ADB (6.2.12.5)

Priority: 2

8.15 Create schema instance (6.3.1)

Schema instances do not map directly into anything available in DEVA and are not necessary for the
SDAI implementation.

Priority: 4

8.16 Add SDAI-model (6.3.2)

Priority: 4

8.17 Remove SDAI-model (6.3.3)

Priority: 4

8.18 Delete schema instance (6.3.4)

Priority: 4

14

8.19 Create SDAI-model (6.4.1)

This function shall create a new SDAI-model in the specified repository.

SdaiModel sdaiCreateModel (SdaiRep repository, SdaiString modeiName, SdaiSchema schema);

SdaiModel sdaiCreateModelBN (SdaiRep repository, SdaiString modelName, SdaiString schemaName);

P~ority: 1

Input:

repos i tory - the identifier of the repository in which the SDAI-model is to be created.

modelName - the name of the new SDAI-model, shall be unique within the repository.

schema - the identifier of the schema that is associated with the SDAI-model

schemaName - the schema is identified by its name instead of the identifier

Return: identifier of the SDAI-model instance

Status: Implemented. A model table is constructed from an array of structures and made globally
available in the SDAI. Each structure contains the number of an SDAI-model and its name. The
number is the number of the DEVA dataset which is allocated to that SDAI-model.

When this routine is called the model table is checked and a new entry created if the modelName IS

not present. Only one data model can be used in a single DEVA server so the input schema is ignored
in the first version and will be checked in a later release.

8.20 Close repository (6.4.2)

This function shall close the specified repository.

Priority: 1

Status: Not yet implemented

This will call deva....fini sh and export any unsaved datasets.

8.21 Get schema definition (6.4.3.1)

This function shall get the schema definition entity to a given schema name.

Priority: 4

8.22 Get schema instance (6.4.3.2)

This function shall get the schema instance identifier to a given schema instance name.

Priority: 3

15

8.23 Delete SDAI-model (6.5.1)

This function shall delete an SOAI-model along with all of the instances which it contains.

void sdaiOeleteModel (SdaiModel model);

Priority: 1

Input:
model - the SOAI-model to delete

Status: Not yet implemented. This could be mapped to deva.deLda taset.

8.24 Rename SDAI-model (6.5.2)

This function shall assign a new name to a SOAI-model.

Priority: 2

Status: This can be implemented at the SOAI interface level by simply changing the name in the
model table.

8.25 Start SDAI-model access (6.5.3)

SdaiModel sdaiAccessModel (SdaiModel model, SdaiAccessMode mode);

SdaiModel sdaiAccessModelBN (SdaiRep repository, SdaiString modelName, SdaiAccessMode mode);

Priority: 1

Input:
model - the identifier of the SOAI-model whose access mode is to be assigned.

repos i tory - the identifier of the repository containing the SOAI-model.

modelName - the name of the SOAI-model, shall be unique within the repository.

mode - the access mode to be assigned to the SOAI-model, can be: sdaiRO for read-only,
sdaiRW for read-write

Return: identifier of the SOAI-model instance

Status: Implemented. This routine checks the model table. If themodelName is not present then
it adds a new entry to the table. It then imports the SOAI-model using deva_funport. The
input parameter access mode is ignored as this cannot be set in OEVA.

8.26 Promote SDAI-model to read-write access (6.5.4)

Priority: 4

16

8.27 End SDAI-model access (6.5.5)

This function shall end access to a given SDAI-model.

void sdaiEndModelAccess (SdaiModel model);

Priority: 1

Input:
model - the identifier of the SDAI-model whose access mode is to be terminated.

Status: Implemented and tested.

This routine checks the model table. If it finds a match then it exports that dataset to the filename
given in the name attribute of the model structure. Before exporting the dataset this routine checks
whether the array in putarray is in this dataset and, if so, commits the array to memory.

8.28 Get entity definition(6.5.6)

This function shall retrieve the entity definition for the specified entity name within the schema
associated to the specified SDAI-model.

SdaiEntity sdaiGetEntity (SdaiModel model, SdaiString name);

Priority: 1

Input:
model - the model of which the entity type is part of its schema

name - the entity type name

Return: the identifier of the entity definition

Status: Implemented using deva.q.a t.ci.

There is only one schema present in a DEVAdatabase so the first parameter, model, will be ignored.
The entity definition is obtained by a call to deva_q_atoi.

8.29 Create entity instance (6.5.7)

This function shall create a new application instance of a specifiedtype in an application SDAI-model.

SdaiApplnstance sdaiCreatelnstance (SdaiModel model, SdaiEntity entity);

SdaiApplnstance sdaiCreatelnstanceBN (SdaiModel modelName, SdaiString entityName);

Priority: 1

Input:
model - identifier of the SDAI-model in which an entity instance will be created

enti ty - identifier of an entity definition

modelName - the name of the SDAI-model in which in entity instance will be created

entityName - the name of the entity type

17

Return: identifier of an entity instance

Status: Implemented and tested.

Map model to dataset. Convert SDAI identifier to DEVAidentifier.
Use deva_geLetot (id, total, high) to get the total number of entities of that type

plus the highest id. Add one to highest id. Then call new DEVAroutine, deva.put.cent i, ty .Ld, to
create an entity instance with no attribute values.

8.30 Undo changes (6.5.8)

Priority: 2

Will use DEVAroutine deva.do.z-oLl.back.

8.31 Save changes (6.5.9)

Priority: 2

Will use DEVAroutine deva_seLrollback.

8.32 Create complex entity instance (6.5.10.1)

This function shall create a new application instance of a specified type determined by a constructed
entity type which is made up of the supplied simple entity types in an application SDAI-model.

Priority: 4

8.33 Get entity extent (6.5.10.2)

This function shall retrieve an entity folder of a given entity type belonging to a SDAI-model.

SdaiSet sdaiGetEntityExtent (SdaiModel model, SdaiEntityentity);

SdaiSet sdaiGetEntityExtentBN (SdaiModel model, SdaiString name);

Priority: 2

Input:

model - the identifier of the model to which the folder belongs

enti ty - the identifier of the entity type definition for the folder

name - the name of the entity type

Return: identifier of a set containing entity instances

Map model to dataset. Call deva.q.at.oi if BN. Call deva_geLetot to get highest id. Call
deva_geLenti ty and place valid entity ids (composed into valid Sdailds) into set. Return
pointer to set.

18

8.34 Type operations (6.7)

Priority: 4

8.35 Get attribute definition (6.7.5.1)

SdaiAttr sdaiGetAttrDefinition (SdaiEntity entity, SdaiString attrName);

SdaiAttr sdaiGetAttrDefinitionBN (SdaiString schemaName, SdaiString entityName, SdaiString attrName);

Priority: 2

Input:

enti ty - identifier of an entity definition

attrName - name of an attribute

schemaName- name of the schema to which the entity type belongs

enti tyName - name of an entity type

Return: identifier of the specified attribute

Need identifiers for all attribute definitions globally. Concatenate at tr number with entity type
number and dataset number.

8.36 Get attribute (6.8.1)

This function shall get, and may convert, a primitive or instance value of an attribute from an SDAI
instance.

void* sdaiGetAttr (Sdailnstance instance, SdaiAttr attribute, SdaiPrimitiveTypevalueType, void *value);

void* sdaiGetAttrBN (Sdailnstance instance, SdaiString attributeName, SdaiPrimitiveType value'Iype, void
*value);

Priority: 1

Input:

instance - the instance of the entity whose attribute is being retrieved attribute - an
instance of an attribute definition from the meta-data schema attributename - the name
of the attribute to be retrieved valueType - the type of the read attribute value - handle
matching or convertible to the val ueType

Output: value - handle filled with the primitive or identifier value retrieved from the attribute.
If the attribute is an aggregate or instance, an identifier shall be returned that may be used in
subsequent C late binding functions to examine their contents.

Status: Implemented using new DEVAroutine, deva_get_attribute. Tested and working for
integers, reals, strings, enumerations, entity references and select references.

19

8.37 Test attribute (6.8.2)

SdaiBoolean sdaiTestAttr (Sdailnstance instance, SdaiAttr attribute);

SdaiBoolean sdaiTestAttrBN(Sdailnstance instance, SdaiString attributeName);

Priority: 2

Input:

ins tance - the instance of the entity whose attribute is being tested

attribute - an SdaiAttr instance from the meta-data schema

at tr ibu tename - the name of the attribute being tested

Return: This function shall return sdai TRUEif the attribute is assigned a value or sdaiFALSEif
the attribute value is undefined.

8.38 Find entity instance SDAI-model (6.8.3)

SdaiModel sdaiGetlnstanceModel (Sdailnstance instance);

Priority: 2

Input:

instance - the instance identifier whose SDAI-model is to be found

Return: identifier of the found SDAI-model

This can be returned by decomposing the id to determine the dataset number and if necessary
re-composing into a globally unique number. It is not necessary to access the database .

. 8.39 Get instance type (6.8.4)

SdaiEntity sdaifletlnstance'Iype (Sdailnstance instance);

Priority: 2

Input:

instance - identifier of an instance

Return: identifier of an entity definition

It should be possible to just decompose the Sdai Id into its constituents one of which is the entity
definition number and then regenerate this into a valid Sdaild.

20

8.40 Is instance of (6.8.5)

SdaiBoolean sdaiIslnstanceOf (Sdailnstance instance. SdaiEntity entity);

SdaiBoolean sdaiIslnstanceOmN (Sdailnstance instance. SdaiString entityName);

Priority: 2

Input:

ins tance - identifier of an instance

enti ty - identifier of an entity definition

enti tyName- identifier of an entity name

Return:

sdai TRUE- if the instance is of the given type

sdaiFALSE- if the instance is not of the given type

Again this can be generated from the Sdaild and no access is necessary to the DEVA database.

8.41 Is kind of (6.8.6)

Priority: 4

This is equivalent to 6.8.5 since subtypes are not implemented in DEVA.

8.42 Is SDAIkind of (6.8.7)

Priority: 4

This is equivalent to 6.8.5 since subtypes are not implemented in DEVA.

8.43 Find entity instance users (6.8.8)

SdaiNPL sdaiFindlnstanceUsers (Sdailnstance instance. SdaiNPL domain. SdaiNPL resultList);

Priority: 3

Input:

ins tance - identifier of the entity instance whose users are requested

domain - identifier of a NPL containing the SdaiSchemalnstance schema instances
which define the domain of the function request

resultList - identifier of the pre-existing NPL to which the Sdailnstance instance
identifiers for those entity instances are added meeting the specified criteria.

Return: identifier of the result NPL

21

8.44 Get attributes (6.8.9.1)

void sdaiGetAttrs (Sdailnstance instance, Sdailnteger numberAttr, SdaiAttr attribute, SdaiPrimitiveType val

ueType, void *value,...);

void sdaiGetAttrsBN (Sdailnstance instance, Sdailnteger numberAttr, SdaiString attributeName, SdaiPrimi
tive'Iype value'Iype, void *value,...);

Priority: 2

Input:

ins tance - identifier of the instance whose attributes are being retrieved.

numberAttr - number of attributes to be retrieved and indirectly number of arguments
specified in call

at tr ibu te - the attribute definition from the meta-data schema of the attribute to be retrieved

attributeName - the name of the attribute to be retrieved

valueType - the type of the read attribute

value - handle matching or convertible to the valueType

Output:

value - these functions shall return the value argument(s) filled with the primitive or identifier
attribute value retrieved from the instance.

If the valueType is of sdaiADB, sdaiAGGRor sdaiINSTANCE,an identifier shall be returned
that may be used in subsequent C late binding functions to examine their contents. The input parameters
attribute, valueType and value shall be repeated in the given order as often as the value of
numberAttr says.

8.45 Get all attributes (6.8.9.2)

SdaiADB *sdaiGetAIIAttrs(Sdailnstance instance, Sdailnteger *numberAttr);

Priority: 2

Input:

ins tance - identifier of the instance whose attributes are being retrieved

Output:

numberAt tr - number of attribute values returned.

Return: This function shall return an C array containing identifiers of internally created SdaiADBs
with the value arguments filled with the primitive or identifier attribute values retrieved from
the instance. If the attribute is an aggregate or instance, an identifier shall be put into the ADB
that may be used in subsequent C late binding functions to examine their contents.

22

The SdaiADB identifiers returned may be used in subsequent C late binding functions to examine
their contents. The array returned contains all of the attribute values in the order defined in ISO
10303-21 [4].

This cannot be implemented by using deva_get-enti ty as the parameter list for deva_get-enti ty
is dependent upon the entity type. This needs to be present at compile-time but the information about
the entity type is not present until run-time as sdaiGetAllAttrs is a generic function for all
entities. The alternative is to implement is by using a new DEVA function to get each attribute one
at a time. This function will be written for the implementation of sdaiGetAttr and will then be
used to implement sdaiGetAllAt trs as a next priority.

8.46 Copy application instance in same SDAI-model (6.9.1)

Priority: 4

8.47 Copy application instance to other SDAI-model (6.9.2)

Priority: 4

8.48 Delete application instance (6.9.3)

void sdaiDeletelnstance (SdaiApplnstance instance);

Priority: 1

Input:

ins tance - identifier of the instance to be deleted

This will be implemented using deva.de Lent i ty.

8.49 Put attribute (6.9.4)

void sdaiPutAttr (SdaiApplnstance instance, SdaiExplicitAttr attribute, SdaiPrimitiveType valueType,...);

void sdaiPutAttrBN (SdaiApplnstance instance, SdaiString attributeName, SdaiPrimitiveType valueType,...);

Priority: 2

Input:

instance - identifier of the application instance

attribute - an attribute definition from the meta-data schema

attributeName - the name of the attribute to be set

val ueType - the type of the attribute to be put

... - value of Sdailnteger, SdaiReal, SdaiBoolean, SdaiLogical type or handle
matching of convertible to the valueType and given as a function parameter with the specified
C late binding type.

Status: Implemented using new DEVA routine, deva_get_attribute. Tested and working for
integers, reals, strings, enumerations, entity references and select references.

23

It is not necessary to use this routine for arrays as the routine sdaiCreateAggr associates the
aggregate with an entity instance.

8.50 Unset attribute value (6.9.5)

Priority: 4

8.51 Create aggregate instance (6.9.6)

This function creates an empty aggregate-valued attribute for an entity instance. It creates an aggregate
instance identifier associated with the specified attribute of the specified instance. If the aggregate
valued attribute had already been created (via a precious Create Aggregate Instance operation) the
existing contents are lost.

SdaiAggr sdaiCreateAggr (SdaiApplnstance instance, SdaiExplicitAttr attribute);

SdaiAggr sdaiCreateAggrBN (SdaiApplnstance instance, SdaiString attributeName);

Priority: 1

Input:

instance - identifier of an application instance

at tr ibute - identifier of the aggregate valued attribute definition of the instance

attributeName -name of the attribute in the entity definition

Return: identifier of the new aggregate

Status: Implemented and tested.

This routine creates an aggregate identifier which is associated with the specified entity instance.

8.52 Get persistent label (6.9.7)

Priority: 4

8.53 Get session identifier (6.9.8)

Priority: 4

8.54 Put attributes (6.9.19.1)

void sdaiPutAttrs (SdaiApplnstanceapplnstance, Sdailnteger numberAttr,SdaiAttr attribute, SdaiPrimitiveType
valueType,...);

void sdaiPutAttrsBN(SdaiApplnstanceapplnstance, Sdailnteger numberAttr,SdaiString attributeName, SdaiPrim
itiveTypevalueType,...);

Priority: 3

24

Input:

applns tance - identifier of the application instance whose attributes are to be set

numberAttr - number of attributes to be set and indirectly number of arguments specified in
the call

attribute - an attribute definition from the meta-data schema of the attribute to be set

attributeName - the name of the attribute to be set

val ueType- type of the attribute to be set

... - value of Sdailnteger, SdaiReal, SdaiBoolean,SdaiLogical type or handle
matchingor convertible to theval ueType,and givenas a function parameter with the specified
C late binding type.

The input parameters attribute (or attributeName),valueType and the value parameter
shall be repeated in the given order as often as the value of the numberAttr says.

8.55 Put all attributes (6.9.19.2)

void sdaiPutAllAttrs (SdaiApplnstance applnstance, Sdailnteger numberAttr, SdaiADB *values);

Priority: 2

Input:
applnstance - identifier ofthe application instance whose attributes are being set

numberAttr - number of attribute values are being provided, determines the length of the
values array

values - an array of C structures SdaiADBcontaining the types and values of the attributes
in the order defined in ISO 10303-21.

This cannot be implementedwith deva.puc.ent.I ty as the variable parameter list cannot be gener
ated at run-time. It will be implemented on top of the new DEVAroutine deva.put .ettr Lbut;e.

8.56 Get member count (6.10.1)

Sdailnteger sdaiGetMemberCount (SdaiAggr aggregate);

Priority: 2

Input:

aggregate - identifier of an aggregate

Return: the number of elements or the size of an array

8.57 Is member (6.10.2)

Priority: 4

25

8.58 Create iterator (6.10.3)

Priority: 4

8.59 Delete iterator (6.10.4)

Priority: 4

8.60 Beginning (6.10.5)

Priority: 4

8.61 Next (6.10.6)

Priority: 4

8.62 Get current member by iterator (6.10.7)

Priority: 4

8.63 Application instance aggregate operations (6.11)

Priority: 4

These all use iterators

8.64 Application instance unordered collectionoperations (6.12)

Priority: 4

An unordered collection is a SET or a BAG which are not implemented in DEVA.

8.65 Indexed get aggregate member (6.13.1)

void* sdaiGetAggrByIndex (SdaiOrderedAggr aggregate, SdaiAggrIndex index, SdaiPrimitiveType value
TYpe,void *value);

Priority: 1

Input:

aggregate - identifier of an ordered aggregate

index - position in the aggregate of the value to be returned

valueType - type of the value to be read

value - handle matching or convertible to the valueType

Output:
val ue - handle filled with the primitive or identifier value retrieved from the aggregate. If the
valueType is of sdaiADB, sdaiAGGR,or sdaiINSTANCE,an identifier shall be returned
that may be used in subsequent C late binding functions to examine their contents.

26

Status: Implemented and tested for integers, reals and entity references. These are the only types of
array values in the MIDAS data model.

This routine has been implemented by getting the whole array from DEVA the first time the array is
accessed. The array is placed in memory. If the next access is to the same array then it is obtained
from memory. If the next access is to a different array then the memory is freed and the required array
is retrieved from the database.

8.66 End (6.13.2)

Priority: 4

8.67 Previous (6.13.3)

Priority: 4

8.68 Indexed put aggregate member (6.14.1)

void sdaiPutAggrBylndex (SdaiOrderedAggr aggregate, SdaiAggrlndex index, SdaiPrimitiveType value'Iype,
...);

Priority: 1

Input:

aggrega te - identifier of an aggregate

index - position in the aggregate of the value to be set

valueType -Type of the value to be set

... - value or handle matching or convertible to the valueType

Status: Implemented and tested. This routine works for integers, reals and entity references which
are the only types of arrays present in the MIDAS data model.

This routine has been implemented by creating a space in memory for the whole array when it is called
for the first time. If the next call to the routine is to put another value into the same array then this
value is placed into memory. If the next call is related to a different array then the previous array is
transferred to the database, the memory is freed and memory obtained for the new array. The array is
also transferred to the database when the array is accessed by sdaiGetAggrByIndex or when the
access to the SDAI-model containing the array is stopped by a call to sdaiEndModelAccess.

8.69 Indexed create nested aggregate instance (6.14.2)

SdaiAggr sdaiCreateNestedAggrBylndex (SdaiOrderedAggr aggregate, SdaiAggrIndex index);

Priority: 3

Input:

aggregate - identifier of a multiple dimensioned aggregate

index - the index at where the new aggregate will be inserted

27

8.70 Entity instance array operations (6.15)

Priority: 4

8.71 Application instance array operations (6.16)

Priority: 2

8.72 Application instance list operations (6.17)

Priority: 3

8.73 C late binding specific type path operations (6.18)

Priority: 4

References

[1] MIDAS.RAL.95.1 "Data Modelling for Electromagnetic and Stress Analysis Integration",
Mrs D Thomas and Dr C Greenough, 30March 1995.

[2] MIDAS.RAL.95.2 "TheMIDASDataModel for Electromagnetic and StressAnalysis Integration,
Version 1.2",Mrs D Thomas and Dr C Greenough, 30March 1995.

[3] ISO 10303-11, "Part 11: Description methods:EXPRESSLanguagereference manual".

[4] ISO 10303-21,"Part 21: ImplementationMethods: Clear text encoding of the exchange structure",

[5] ISO TCI84/SC4IWG7 N394, "Product data representation and exchange, Part24, Standard data
access interface - C language late binding", 28 July 1995.

. [6] ISO TCI84/SC4IWG7 N382, "Product data representation and exchange, Part22, Standard Data
Access Interface", 31May 1995.

28

A Implementation classes

This table describes the operations required for each implementation class defined in the STEP SDAI
[6]. The operations are named and numbered according to the SDAI definitions in Part 22 not the C
late binding functions defined in Part 24.

II Operation II 1 I 2 I 3 I 4 I 5 I 6 I
11.3.1 Open Session Y Y Y Y Y Y
11.4.1 Start event recording N N N Y Y Y
11.4.2 Stop event recording N N N Y Y Y
11.4.3 Close session Y Y Y Y Y Y
11.4.4 Open repository Y Y Y Y Y Y
11.4.5 Start transaction read-write access N N N N Y Y
11.4.6 Start transaction read-only access N N N N Y Y
11.4.7 Commit N N N N Y Y
11.4.8 Abort N N N N Y Y
11.4.9 End transaction access and commit N N N N Y Y
11.4.10 End transaction access and abort N N N N Y Y
11.4.11 Create non-persistent list Y Y Y Y Y Y
11.4.12 Is non-persistent list of y y y y y y
11.4.13 SDAI-query ?
11.4.14 Record event N N N Y Y Y
11.5.1 Create schema instance Y Y Y Y Y Y
11.5.2 Add SDAI-model P P Y P Y Y
11.5.3 Remove SDAI-model Y Y Y Y Y Y
11.5.4 Delete schema instance Y Y Y Y Y Y
11.5.5 Validate global rule N P P P P Y
11.5.6 Validate uniqueness rule N Y Y Y Y Y
11.5.7 Validate instance reference domain N Y Y Y Y Y
11.5.1-11.5.2 Repository operations y y y y y y
11.6.1-11.6.9 SDAI-model operations Y Y Y Y Y Y
11.6.10-11.6.11 Save and Undo N N N Y N N
11.7.1-11.7.10 Scope operations N Y Y N N y
11.8.1 Get Complex Entity N ? ? ? ? Y
11.8.2 Is subtype of y y y y y y
11.8.3 Is SDAI subtype of Y Y Y Y Y Y
11.8.4 Is interoperable with N N Y N Y Y
11.9.1 Get Attribute P P P P P Y
11.9.2-11.9.7 Entity instance operations y y y y y y
11.10.1-11.10.6 Application instance op.s Y Y Y Y Y Y
11.10.7-11.10.16" validation N P P P P Y
11.11.1-11.18.4 Aggregate operations Y Y Y Y Y Y

29

