
~
LOo
I

LO
CO
I....J

<t:a:

;

Science and Engineering Research Council

Rutherford Appleton Laboratory
CHILTON, DIDCOT, OXON, OX11 OOX

RAL-85-051

Formal Specification - A Comparison
of Two Techniques

o A Duce and EVe Fielding

.July 1985

, -

Formal Specification - A Comparison of Two Techniques

D. A. Duceand E. V. C. Fie/dinK

Rutherford Appleton Laboratory, Chilton, Didcot OXON OXil OQX

1. Introduction
In previous papers [1,2,3] the applicability of a constructive specification technique to the problem
of formally specifying graphics software has been investigated by the development of a formal
specification of a small part of the Graphical Kernel System (GKS) [4,5], the ISO graphics
software standard. Other authors [6,7,8] have investigated the application of algebraic specifica
tion techniques to graphics software. This paper compares and contrasts these two approaches to
specification by presenting specifications of the same example from GKS using both an algebraic
technique and a constructive technique. An attempt is made to explain the insights that each tech
nique provided.
The algebraic technique described is OBI [9,10,11] and the constructive technique which is used is
based on the Vienna Development Method (VDM) [12], The example chosen for the comparison is
attribute handling in GKS. The next two sections describe the specification methods and the
example which is tackled, after which the two specifications are presented and discussed,

2. Formal Specification
The purpose of a formal specification is to state what a system should to do without prescribing
how it is to do it. A formal specification defines a system in an implementation independent way
by describing its internal state in terms of abstract data types which are characterized only by the
operations allowed over them.
The two main approaches to specifying abstract data types which this paper explores are: the alge
braic approach, which specifies the operations of an abstract data type implicitly by relating them
to each other using, for example, algebraic equations; and the coostructi-.e approach. which speci
fies the operations of an abstract data type explicitly in terms of some precise discipline such as set
theory, for example. OBI has been used as an example of an algebraic approach. and a subset of
VDM has been used as a representative of the constructive approach. These two specification
techniques are described and are then applied to the same example to reveal the strengths and
differences in the two approaches.

2.1. The Algebraic Approach using OBJ
OBJ is an algebraic specification technique in which equations are used to define abstract data
types. This enables abstract data types to be defined independently of any representation and OBJ
specifications have an algebraic formal semantics based on equational logic. OBI specifications
also have an operational semantics based on interpreting the equations as rewrite rules, which
makes it possible to validate OBI specifications by testing and to use the specifications as proto
types to explore and to confirm the correctness of design decisions.
OBJ has powerful facilities for parameterization, modularity and data abstraction. However, the
specification given here uses only a subset of OBI for which an interpreter was available in the
U.K. at the time of writing this paper [9]. The advantages gained by mechanized syntax- and
type-checking were considered to be sufficiently great as to outweigh the disadvantages caused by
restriction to this executable subset of OBI. The subset excludes parameterization, mixfix opera
tors, overloaded operators and operator attributes. Mixfix operators are defined using underbars

-
-2-

to indicate argument positions, for example, 'if _ then _ else _'. This allows customized operator
syntax with prefix, postfix, infix etc. orders as well as generally distributed fix operators with key
words and arguments in any desired order. Overloaded operators are distinct operators with the
same syntax but with different argument types, for example. the operator '_ +_' defined for both
real and integer addition. The interpreter supports only prefix operators, however, for readability.
the specification is presented using mixfix and overloaded operators. Operator attributes have
only been used where necessary. They are described later in this section.
An OBJ specification has a modular structure with basic components called objects. An object is a
module defining an abstract data type by introducing new sorts of data and operations on the
data. These sorts (identifiers for carrier sets) and operations (symbols for functions) with their
associated functionality, together constitute the signature of the abstract data type. The idea of an
object corresponds to the class concept of Simula or the package concept in Ada, while the idea of
a sort is similar to that of a type in Pascal (a named domain of values).
An object in OBJ can be defined as an enrichment of a previously defined sort. Objects in OBJ
then form a dependency hierarchy which is an acyclic graph where one object is higher in the
hierarchy than another if it imports the lower object. This ensures that everything that is used has
been defined. At the lowest level are 'built-in' objects of the implementation, such as Bool and
Nat.
These ideas will be illustrated and new terms that have been introduced will be defined by looking
at the OBJ specifications of three abstract data types: STATE, NDC....POINT and
NDCPOINTS, starting with the specification of the abstract data type NDCPOINT. In OBJ
this is:

lobj NDC....POINT
sorts NDC....Point
ops mk.ndc.point: R R•NDC....Point

I
get.sx.xoordinate: NDC....Point•R

vars x, v: R
II eqns (get....x_coordinate(m/cndc_point(x, y)) = x)

I jbo I
Each object is introduced by the keyword obj, followed by the name of the object, in this case
NDC....POINT. The end of an object definition is denoted by jbo. An object may introduce a
number of sorts; each sort (e.g. NDCPoint) is an identifier that denotes a set of values, called the
carrier set of the sort. A carrier set is simply the domain of values of elements of the sort. Note
that NDCPOINT is used to denote the object as a whole, including the carrier sets, signatures
and operators of the object, while NDCJoint denotes only the carrier set of NDC....POINT.
Objects may also introduce operators and their signatures, following the keyword ops. The signa
ture of an operator declares its functionality by: a form which indicates the distribution of key
words and arguments (using underbars to indicate argument places for mixfix operators); an arity
which lists argument (domain) sorts; and a coarity which is the sort of the range of the operator.
The form and the arity of an operator are separated by':', and the arity is separated from the
coarity by the symbol '-+'. The object NDC .Point introduces two operators: mk .ndc _point.
which takes two arguments of sort R (real) and returns an object of sort NDC .Point ; and
get....x.xoordinate , which takes an argument of sort NDC Joint and returns an object of sort R.
The definition of NDCJOINT illustrates how to define objects whose sorts are Cartesian pro
ducts of component sorts, in this case the object is an ordered pair.
The operators of a data type can be classed into two groups: geaerator operators which produce
objects of the sort of interest; and selector or eoqairy operators which produce objects of other
types. The smallest subset of the operators which allows all the values of the carrier of the sort to
be reached (ie. can generate all the objects of the sort) is called the coostroctors or primitive gen
erators of the sort.
The operator mkJldc_point is the constructor for the sort NDC....Point, ie:

...

-
- 3 -

V pt E NDC_Point =1X, Y E R . pt = m/c.ndc_point(X, y)

Most objects of interest have equations, defined after the keyword eqDS_ The equations define the
relationships (identities) between expressions containing the operators, free variables (universally
quantified), and conditional tests. The variables appearing in the equations are sort-constrained
and must be declared after the keyword ,an preceding the equation definitions.
The equations relate the other operators of the sort to the constructors. So the equation given in
the definition of the object NDC _POINT expresses the selector operator get_x_coordinate in
terms of an identity involving mk .ndc _point.
A more familiar form of this equation might be:

V x, Y E R . getsx.xoordmateimk.ndc.pointtx, y» = x

Having defined the data type NDC_POINT, the definition of the data type NDC_POINTS can
now be given. It uses the sort NDC .Point , so its definition illustrates the hierarchical structure of
an OB1 specification.

: obj NDC_POINTS / NDC_POINT
: sorts NDC_Points
i ops empty.ndc .points: --+ NDC_Points
I _ :: _ : NDC_Point NDC_Points --+ NDC_Points
I.: jbo
I
I

The object NDC _POINTS refers to the object NDC _POINT (by the part of the definition:
/ NDC _POINT). Several previously defined objects may be imported in this way. Two operators
are defined for the sort NDC_Points: empty_NDCJoints and '::', both of which are construc
tors. The operator empty .ndc ipotnts defines a constant of the sort NDC Joints as it has no
arity. The definition of the operator '::' is an example of the OBJ notation for defining mixfix
operators in which arguments are distributed through the form, using the symbol ':' as a place
marker to indicate argument positions. Both the number and order of place markers must agree
with the number and order of domain sorts (sorts on the left hand side of the signature).
That the two operators defined are both constructors can be seen from the fact that the object
NDC JOINTS has no equations. Two constructors are necessary because there is a distinguished
value or constant in the carrier of the sort which can be reached only by the constructor
empty .ndc .points . In other words:

= empty.ndc.points E NDC_Points S.t.
V pt E NDC_Point " ndcpts E NDC_Points
empty.ndc.points "# pt :: ndcpts

It is also true that:

't ndcpts E NDC_Points . ndcpts "# empty.ndc.points
:: n IE NDC_Points 1\ p E NDCJoint
s.t. ndcpts = p :: n I

The operator '::' defines how objects of sort NDC .Points are built up from objects of sort
NDC .Point and is equivalent to an infix form of the cons list constructor. The definition of
NDC _POINTS thus illustrates how to define objects which have a list structure in OBJ.
A data type STATE is now defined as follows.

-
- 4 -

obj STATE/ NDCYOINTS
sorts State
ops mk istate: NDCYoints R -+ State

addipoint: NDCYoint State -+ State
vars pt: NDCYoint

x, y: R
ndc.pts: NDCYoints

eqns (add.pointtpt , mk .statetndc.pts, x_min» =
mkstatetptundc.pts, x.imin) if (get.sx.xoordinatetptv ~ x.min))

(add.pointipt , mk.istatetndc spts, x.mini = I
mkstatetptundc pts. get.x.xoordinateipti if (get.sx.xoordinatetptv < x.mini I

I

I
It is assumed that the ordering operators '~' and '<' have been defined in the data type R.
The equations above illustrate the use of conditional expressions to limit the applicability of an
equation. They define the effect of the operation add ipoint on State, which is to add a new point
to the list of points in the first component of State and to update the second component so that it
remains equal to the minimum of all the x coordinates of the points in the list. (Questions of ini
tialization are ignored.) .
OBJ has powerful pattern matching facilities which aid conciseness in defining operations by recur
sion equations.
It has already been mentioned that OBJ specifications have a well defined mathematical semantics .

. This is true of algebraic specifications in general, and in the case of OBJ these semantics are based
on an initial algebra semantics. The formal semantics of OBJ specifications do not concern us in
this paper. However the operational semantics which may be given to algebraic specifications
through term rewriting is of interest and the way in which it operates is as follows. Each equation
is treated as an ordered pair

<left hand side> -+ <right hand side>

and used as a rule for replacing instances of the left hand side of the pair by the right hand side.
Computation of an expression then proceeds by repeatedly matching instances of left hand sides of
rules and replacing them by their corresponding right hand sides until an expression is obtained in
which no further matches are possible. The resulting expression is then said to be reduced or in
DOrmal form and is the meaning of the original expression.
The equation defining commutativity of an operator, for example:

(i + j = j + i)

if used directly as a rewrite rule causes the process of expression rewriting to become non-finite
terminating, because a commutative equation may always be applied to the result of a previous
application to yield the original expression. Partly for this reason, some properties of operators
may be specified as attributes, for example, the operator' +' may be given the PERMUTING
attribute:

+:Nat Nat -+ Nat (pERMUTING)

the effect of which is that the OBJ interpreter then remembers intermediate values arising in the
evaluation of an expression involving •+' and will not apply a rule which would produce an
expression already obtained, thus avoiding looping.
Other attributes permitted are ASSOC, COMM, and ID. ASSOC defines an operator to be asso
ciative, COMM defines it to be commutative and ID declares the identity element for an operator.
Thus '+ ' could be written:

...

-
- 5 -

+:Nat Nat -+ Nat (ASSOC COMM ID:O)

These attributes indicate to the expression rewriting system to take special action to avoid non
terminating sequences of rewrites and they also effectively introduce additional equations: the
equations for associativity, commutativity and the identity element,
Examples of the use of attributes will be seen later in this paper.
As an example of the rewri ting process, consider the equation in NDC Joint. Expressed as a
rewrite rule this becomes:

getx coordinatetmkndcpointix, y» -+ x
where x, y E R

Consider the expression:

mkJldc_point(get__.x_coordinate(mk.Jldc_point(O.O, 0.1), 0.2)

Applying the rewrite rule above we obtain:

mkJldc_point(O.O, 0.2)

which is the meaning of the expression as it contains only a constructor and so cannot be reduced
further.
The constraints which must be satisfied for the application of rewrite rules to an expression to
converge finitely are called the Church Rosser property (every terminating sequence of rewrites
stops at a unique reduced form) and the termination property (every rewrite sequence terminates
after a finite number of steps). In practice these properties are usually easy to satisfy. They imply
that two expressions have the same meaning only if they reduce to the same normal form.
The OBJ interpreter allows specifications to be 'executed'. in the sense that expressions may be
evaluated by exhaustively using the equations as rewrite rules. Examples of the use of this means
of testing or exploring the behaviour of an OBJ specification are shown later as are other features
ofOBJ.

.•

2.2. The Constructive Approach using VDM
VOM is a constructive or model-based specification technique, which is denotational in approach.
The mathematical foundations underlying denotational semantics are discussed in relation to
VDM in [13] but are not the concern of this paper. The specifications given here use a limited
subset of VOM for which a simplified notation can be described. It is possible to give an opera
tional semantics to a subset of VDM. This has been done for a variant of YOM, called me
too[14], which provides the operational semantics of LispKit for such constructive specifications.
A VDM specification has three components.
I) a model of the state;
2) invariants on the state;
3) operations over the abstract data type comprising the state.
The state definition describes the structure of the class of objects representing the state in terms of
familiar basic types (natural number, real number, boolean etc.) and more complex data types
built from these basic types, and constructors such as set, tuple, list and mapping. The con
structed types are assumed to have implicitly defined with them constructor functions and other
associated operators that are 'intuitively obvious', for example, bd and d with list. These con
structed types could be thought of as being already defined and available abstract data types, and
could indeed be defined algebraically for completeness. So unlike an OBI specification, a VDM
specification does not define a multi-level hierarchy of abstract data types. with each a.bstract data
type being defined in a uniform way and packaged into a separate module. Rather. in VDM, a
single global definition is given of the abstract data type comprising the state, defined in terms of
implicitly predefined abstract data types, and the hierarchy of types, although it exists, is not

. ..

-
-6-

explicitly brought out.
The invariants limit the objects within the class of objects representing the state to those that
represent valid states. Invariants are thus constraints that must be preserved by the operations.
Invariants are useful not only during the design process, but also during later modifications to the
specification, for they represent properties of a design which must always hold.
The operations are defined implicitly by predicates which allows relations, and thus non
determinacy to be specified. However, the operations given in this paper do not require this gen
erality, and in fact, reduce to functions, which allows the possibility of translation into me too with
the benefits of 'executability'. The definitions of operations given here have the general form (or
signature):

Inputs x State•State

There are two predicates defining each operation: a pre-coDdition and a post-condition. The former
is a predicate over initial state and inputs and defines the conditions under which the operation
produces valid results. The latter is a predicate over the initial state, inputs and final state, which
defines the effect of the operation.
To illustrate these ideas, the data types NDC .Points and NDC .Point are considered as they
would be defined and used in a VDM specification. Suppose that NDC .Points is the first com
ponent of some state State, which has a second component of type R (real). The state definition
is as follows:

The state

State = NDC__Points x K.Min

NDC__Points = list of NDC__Point
NDC__Point = R x R

X.JIin = R

This defines an object of type State to consist of an ordered pair with first component of type
NDC .Points and second component of type X.JIin. Objects of type NDC .Points are modelled
as a list of objects of type NDC .Point . The type NDC .Point is again an ordered pair and each
of its components has the basic type R, which is also the type of X .JIin. So the data type
NDC .Points is constructed from the data type R using the constructors Cartesian product and list
of, as is the data type State.
This state is intended to model a list of points and the minimum. value of the x coordinates of the
points in the list. .

IDvariant

'rJ mk.stateindc.points, x_min) EState
ndc.points -:;:empty.ilist -=-

x.min = min et.x.xoordinat

The invariant states that for a non-cm.pty list of points, the x_min component of the state is the
minimum value of the x coordinates of the points in the list. The operator elems maps a list onto
the set of elements contained in it.

. ..

-
-7 -

The operation

i let mk.stateindc.points. x_min) = state ill
I! add.ipoint: NDCYoint x State- Statei add.pointistate, pt. state') ~
: pre true
, post ndc .points' = pt :: ndc.points I\.
I x .min' = if get.x.xoordinateiptt ~ x.min then x.minI else get.sx.coordinateiptt
I

! get...x.scoordinate: NDCYoint -+ R
, et.x.xoordtnate t ~ let mk.ndc

The operation add ipoint is defined over objects of type State, and it adds a new object of type
NDC .Point to the NDC_Points component of the state and ensures that the X_Min component
reflects the minimum of all the x-coordinate values in the state.
The let clause preceding the operation definition holds over all subsequent operation definitions (in
this case only one), and names the initial state and its components. mJc.state is an example of a
constructor function and it creates an object of type State. The convention that is used is that type
names have capitalized initial letters and constructor function names arc always, and instance
names are usually, the lower case equivalents of their types (prefixed by mJc _ in the case of con
structors). The names of the final state and its components which result from operations are
obtained by decorating the initial state and component names with prime n. This should be done
by a second let clause of the same form which names and constructs the final state, but this has
been omitted as its absence should not cause any confusion.
The first line of the operation definition is its signature and defines the types of the arguments and
the result of the operation. The second line names the objects whose types are given in the signa
ture. So the initial state, state, is of type State; the argument pt is of type NDC .Point ; and the
final state resulting from the operation, state' is also of type State.
The pre-condition being true implies that for all values of inputs and initial state the operation will
produce a valid result. True pre-conditions are omitted in the specifications that follow.
The post-condition predicate describes the effect of the operation by relating the objects describing
the initial and final states. It expresses the effect of the operation add .point as follows. The
value of the NDC_Points component of the final state, ndc spoints'; is obtained by adding the
argument pt to the head of the list ndc .points by the use of the polymorphic list constructor '::'.
This symbol denotes an infix form of the list operator cons, which is implicitly available for use
with objects defined by the list of construct. The value of the X_Min component of the final
state, x .min', is expressed as the minimum of the result of applying an auxiliary function,
ge t _..x.xoordinate to the argument pt and the initial value x imin, All the components of the
state have been explicitly mentioned in the post-condition. By convention, any components of the
state which are not mentioned in the post-condition of an operation are assumed to be unchanged
by the operation.
The use of the projection function. get __x .xoordtnate, in the post-condition of the operation
add .point illustrates how subsidiary functions are defined and used. The first line of its definition
is its signature which shows that it is defined over the data type NDC.Point and returns a result
of type R. The next line names the argument pI and defines get _..x.coordinate to be a selector
function which returns the first component of an object constructed by the constructor
mk .ndc .point . In general. subsidiary functions will not just be operators for data types, but this
example is interesting as it illustrates the difference in packaging between OBJ and VDM .

...

-
- 8 -

3. The Example
GKS provides a functional interface between an application program and a configuration of
graphical input and output devices at a level of abstraction that hides the peculiarities of device
hardware. It achieves device independence by means of the concepts of abstract input, abstract
output and abstract workstations. The concept of abstract input will not be discussed, but the
specifications attempt to capture the other two concepts.
Firstly, the concept of abstract output is described. In GKS. pictures are constructed from a
number of basic building blocks, called output primitives, which are abstractions of the basic
actions that a graphical output device can perform (eg. drawing a line). There are six output
primitives in GKS: polyline, polymarker, text, fill area, cell array and generalized drawing primi
tive (GDP); each of which has associated with it a set of parameters, which defines a particular
instance of the primitive. This paper considers the polyline primitive, which draws a connected
sequence of line segments and has the coordinates of its vertices as parameters.
The concept of an abstract workstation in GKS is an abstraction from physical device hardware
and maps abstract output primitives to physical output primitives and physical input primitives to
abstract input primitives. It represents zero or one display surfaces and zero or more input devices
as a configuration of abstract devices. An application program may direct output to more than
one workstation simultaneously; however, the specification will aim to model only a system with a
single workstation.
The application program specifies coordinate data in the parameters of an output primitive in
world coordinates (WC), a Cartesian coordinate system. World coordinates are then transformed
to a uniform coordinate system for all workstations, called aorm.aJizeddevice coordinates (NDC)
by a window to viewport mapping termed a DOrmalizationtraasf'ormation. A second window to
viewport mapping. called the workstation transformation accomplishes the transformation to the
device coordinates (DC) of the display surface.
In order to simplify the specification, WC coordinate space will be ignored and it will be assumed
that polyline coordinate data are supplied in NDC coordinates. It is also assumed that the single
workstation transformation is fixed. Primitives can optionally be clipped to the boundary of the
viewport of the normalization transformation, but clipping too, will be ignored.
An application often requires the capability of structuring a picture, such as the ability to define a
graphical object, for example, a tree by a sequence of polyline primitives, and the ability to re-use
this definition. GKS allows output primitives to be grouped together into units termed segments
which are stored, conceptually at the NDC level, and which may be manipulated in certain ways
as a single entity. Segments may not be nested.
So pictures are constructed from both primitives outside segments and segments. The specifica
tions will attempt to capture this picture structure and the creation and storage of segments, but
not any further segment manipulations.
The appearance of a primitive displayed on a workstation is determined by its parameters and
additional data termed aspects. The aspects of a polyline are: lmetype, which in GKS may be
solid, dashed, dashed-dotted or an implementation-dependent type; linewidth scale factor, which is
applied to the nominal linewidth provided by the workstation to give a value which is then
mapped to the nearest available linewidth; and polyline colour index which is an index into a
workstation dependent colour table. For simplicity, it will be assumed in the specifications that
follow that the value for linewidth can be specified directly, rather than as the product of a scale
factor and a nominal width. It is also assumed that the workstation supports any linetype and
linewidth requested, as, although it is a simple matter to map the requested value onto the nearest
available value, this adds needless complexity for the present purposes. Colour will also not be
considered.
The values of aspects are determined by attributes. There are two basic schemes for specifying
aspects, termed iDdividual specification and bundled specification. In the individual scheme the
value of each aspect is determined by a different attribute; the linetype aspect by the linetype attri
bute and the linewidth scale factor aspect by the linewidth scale factor attribute. For each of the

-
- 9 -

attributes there is an operation to set its value. In this scheme, the setting of the value of an attri
bute, such as linetype, applies to all subsequently created polyline primitives until it is reset. The
individual schemewill not be further considered here.
In the bundled mode of specifyingpolyline aspects, the values of all the aspects are determined by
a singleattribute, called the polylineiDdex. A polyline index defines a position in a table, the poly
line bundle table, each entry in which is termed a baadle and specifies the values for each of the
aspects. The bundle corresponding to a particular polyline index is termed the repreaentationof
the index. There is an operation which sets the value of polyline index modally, as well as an
operation to set the representation of a bundle index. When a polyline primitive is created, the
current value of the polyline index is bound to the primitive and cannot subsequentlybe changed.
Bundles are bound to primitiveswhen they are displayed. If a representation of a particular poly
line index has not been defined, the representation for polyline index I is used instead. GKS is
initialized such that there will always be a representation defined for polyline index 1.
In GKS each workstation has its own polyline bundle table, which allows the application to con
trol the appearance of polylines with the same polyline index independently on each workstation
on which they are displayed, using the capabilities of the workstation. If a representation of a
polyline index is changed, the appearance of polylinesalready created with that polyline indexmay
also be changed to the new representation. Thus although the value of the polyline index with
which a polyline is created cannot subsequently be changed, the representation with which the
polyline is displayed'can be changed. GKS admits that some workstations are able to perform
changes dynamically (for example a colour table can be dynamically changed on most raster dev
ices affecting the appearances of all primitives displayed), whilst for other devices the picture has
to be redrawn to effect the change (for example changing colour on a pen plotter). This act of
redrawing the picture is termed regeneration, Regeneration is performed from segment storage
since this is the only stored representation of the picture in GKS.
Associated with each workstation in GKS is a workstation description table which describes the
capabilities of the workstation. Amongst other entries, it contains flags for each possible picture
change that may require a regeneration, for example:

dynamicmodification accepted for polyline bundle modification
If a flag has the value IMM then the corresponding change can be performed immediately by the
workstation; if it has the value IRG an implicit regeneration is required. When a regeneration is
signalled, another flag - implicit regenerationmode is consulted. This flag can be set by the appli
cation program and has two possible values: ALLOWED - the regeneration is performed immedi
ately; SUPPRESSED - the regeneration is postponed until one of the GKS functions REDRAW
ALL SEGMENTS ON WORKSTATION, UPDATE WORKSTATION, or CLOSE WORKSTA
TION is invoked,
In order to specifythis simplifiedGKS system, the concepts that must be captured are:
1) the concept of a picture in NDC space in which polylines are created and where attributes

are bound to them;
2) the concept of a segment store;
3) the concept of a workstation, which can be represented by specificationsof the concepts of: a

picture in DC space which displays polylines with their representations bound to them; a
polyline bundle table; a bundle modification flag; and an implicit regeneration mode flag.

The GKS functions relevant to this simplifiedsystemare:
POLYLINE

generate a polyline defined by points in world coordinates;
SET POLYLINE INDEX

select a polyline index to be bound to subsequentlycreated polylines;

-
- 10 -

CREATE SEGMENT
create the specified segment: subsequently created primitives are stored in this segment until
it is closed;

CLOSE SEGMENT
close the open segment;

REDRAW ALL SEGMENTS ON WORKSTATION
redraw all visible segments stored on the specified workstation;

SET POLYLINE REPRESENTATION
define the representation of the specified polyline index on the specified workstation.

To model these functions directly introduces some complexity unnecessary for the present pur
poses, and hence the following operations, which are abstractions of the GKS functions are used
instead. The following abstractions of GKS functions need to be specified:

add.polyline: NDCYoints x GKS -+ GKS
add.segment: Segment x GKS -+ GKS
redraw.iall.segments: GKS -+ GKS
setpolyline.representation: Polyline.Jndex x Linetype x Linewidth x GKS -+ GKS

The operation add .polyline is equivalent to:

SET POLYLINE INDEX(...)
POLYLINE(...)

and add .segment to:

CREA TE SEGMENT(...)
SET POLYLINE INDEX(...)
POLYLINE(...)

SET POLYLINE INDEX(...)
POLYLINE(...)

CLOSE SEGMENT

4. The Specifications
The OBJ specification is presented first, followed by the VDM specification. Some descriptive
commentary and comparison is given with the presentations of the specifications and in the next
section the merits of the two techniques are further discussed..

4.1. The OBJ Specification
This is presented in a 'bottom-up' order. Although it does not necessarily have to be developed
this way; this order, where things have to be defined before they are used, is required by the OBJ
interpreter, and is a logical way to describe the OBJ specification. Firstly, some fundamental
objects are defined, on which the objects capturing the GKS concepts are based.

4.1.1. Fundamental Objects
OBJ has the built-in object TRUTH which defines the sort BOOL and (distinguished) constants T
and F for true and false. The object TRUTH is implicitly accessible from any user defined object,
however, the usual boolean operators are not built-in to OBJ and must be defined,

-_
- II -

obj BOOLEAN
ops not _: BOOL•BOOL

_ and _. _ or _: BOOL BOOL•BOOL
vars b: BOOL
eqns (not T = F)

(not F = T)
(Tor b = T)
(b or T = T)
(For b = b)
(b or F = b)
(b or b = b)
(T and b = b)
(b and T = b)
(F and b = F)
(bandF= F)
(b and b = b)

dbo
I

As there is no built-in implementation of the sort Real. the built-in sort Nat is used. without too
much loss of generality, in places where R is used in the VDM specification as is required by
GKS.
The next objects to be defined are the polylines in NDC and DC space which are used to specify
the GKS function polyline. These objects are NDC_POLYUNE and DC_POLYLINE. NDC
polylines are represented by the list of vertices (of sort NDC_Points) of the polyline (in NDC
coordinates), and the polyline index (of sort Nat) with which the polyline is created. The defini
tion of NDC _POLYLINE uses the objects NDC _POINTS defined earlier. The definition is not
repeated here.

lobj NDC_POLYLINE / NDC_POINTS
, sorts NDC_Po/ylinei ops mk indc ipolyline: NDC_Points Nat•NDC_Po/yJine
: jbo
!

Next the object DC _POLYLINE is defined. The sort DC .Polyline represents polylines as
displayed on the workstation display surface. Objects of this sort are tuples; the first field is the
list of vertices of the polyline. the second the polyline index with which the polyline was created
and the third the bundle, (linetype, linewidth) pair, with which it is displayed. DC _POLYLINE
uses the objects BUNDLE and DC _POINTS. The latter defines lists of points in DC coordi
nates, and mirrors the object NDC _POINTS.
The object BUNDLE defines bundles. Bundles are represented by Cartesian products: pairs,
whose first component represents linetype and second represents linewidth. Linetype and
linewidth are both represented by natural numbers.
The object TRANSFORM defines a function t which converts an object of type NDC .Points to
an object of type DC .Points by transforming each of the component objects of type NDC .Point
to a corresponding objects of type DC .Point , As the details of how the actual transformation is
accomplished are not of interest. they are not given here.

- 12 -

-

obj BUNDLE
sorts Bundle
ops mk.bundle: Nat Nat -+ Bundle
jbo

IObj DCYOLYLINE / DCYOINTS BUNDLE
sorts DCYoZvline
ops mk_dc_polyline: DCYoints Nat Bundle -+ DCYolyiine
jbo

.obj DCYOINT
I sorts oc.roe«
i ops mk..dc.potnt: Nat Nat -+ DCYoint
! jbo
I
I
obj DCYOINTS / DCYOINT
sorts DCYoints

lops emptysicipoints: -+ DCYoints

I
_ :: ..; DCYoint DCYoints -+ Dtl Potnts

jbo

obj TRANSFORM / NDCYOINTS DCYOINT
ops t: NDCYoints -+ Dtl.Points
jbo

4.1.2. Objects Capturing GKS Concepts
At this point, all the objects have been defined which are necessary to enable the GKS concepts of
a segment, segment storage, the NDC and DC pictures, as well as a polyline bundle table, to be
defined.
Firstly the objects SEGMENT and SEGMENT _STORE are specified.

obj SEGMENT / NDCYOLYLINE
sorts Segmen t
ops empty.segment: -+ Segment

_ ::_: NDCYolyline Segment -+ Segment
jbo

obj SEGMENT _STORE / SEGMENT
sorts Segment.Store
ops empty iss: -+ Segment.Store

_ ::_: Segment Segment.Store -+ Segment.Store
jbo

The object SEGMENT uses the object NDC YOLYLINE as segments are comprised of NDC
polylines. The definitions of SEGMENT and SEGMENT _STORE resemble the definitions of
both NDC YOINTS and DC _POINTS as they are all list-structured objects and all define the
overloaded operator '::'. (If the parameterization facilities of OBJ were being exploited, a single
object could be given which defines the list operators and is parameterized on the type of objects
comprising the list. This object could then be instantiated with these four types giving a more
concise description.)
Now the concepts of a NDC picture and a DC picture can be specified by the objects
NDC _PICTURE and DC _PICTURE. Again, these two objects have a list structure, but they

As can be seen from the two definitions of the polymorphic operator '::' in the object
NDC _p ICTU RE, a picture in NDC space is comprised of both NDC polylines and segments.
The object DC .Picture consists of DC polylines only and calls for some comment. The operator
'II' combines DC pictures and the equations linking this operation to the constructors
empty _de _picture and '::' illustrate the use and power of pattern matching in OBJ. Patterns are
used in the left hand sides of the equations to select the cases in which they are applicable. The
equations given here are equivalent to:

dc_picJ !! dc_pie2 = if dc_picl = empty.sic.picture then dc_pic2
else bd dc_pic1 :: (d dc_pic1 II dc_pic2)

where bd and tl are the usual head and tail operators for lists.
The next part of the specification characterizes a polyline bundle table. Before defining the object
POLYLINEJJUNDLE_TABLE, we need to define sets of natural numbers.

I obj SELOF...NAT / BOOLEAN
sorts Set.Of.Nat
ops @: -+ Set.Df.Nat

{_}: Nat -+ SeLOf_Nat
_ U _: SeLOf_Nat set.Of.Nat -+ SeLOf_Nat (ASSOC COMM ID: ftJ)
E: Nat Set.Df.Nat -+ BOOL

vars i, j : Nat
5: Set.Df'.Nat

eqns (5 U 5 = 5)
I (iE@=F)
i (i E U} = (i = = j))
i (iE(51 U 52) = (iE51)or(iE52»
! jbo
I

- 13 -

have richer operators than those seen previously.

obj NDCYICTURE / NDCYOLYLINE SEGMENT
sorts NDCYieture
ops empty-ndc .picture: -+ NDCYicture

_ :: _: NDCJ'oiyline NDCYicture -+ NDCYicture
_ :: _: Segment NDCYicture -+ NDCYicture

, jbo
I
j obj DCYICTURE / DCYOLYLINE
! sorts DCYicture
i ops empty.sic.picture: -+ DCYicture

_ :: _: DCYoiyline DCYicture -+ DCYicture
_ II _: DCYicture DCYicture -+ DCYicture

I vars dc.picl , dc_pic2: DCYicture

I
dc_pl: DCYo(vline

eqns (empty sdcptcture II dc_pic2 = dc_pic2)I ((dc_pl :: dc_piC/) II dc_pic2 = dc_pl :: tdc.picl II dc_pic2))
I jbo

The attributes of' u ' define the operator to be associative:

(SIUS2)US3 = SIU(S2US3)

commutative:

-

- 14 -

and have identity f1 (the empty set):

-

f1us =suf1=s

It takes a little time to get accustomed to these definitions. It is worth noting that the set:

{a,b,c,d}

is represented by the following expression in the algebra:

{a} U {b} u {c} u {d}

The first equation in SET _OF_.NAT removes duplicate elements when forming the cup of two
sets. The next three equations define the membership relation. the second of which defines
membership of a singleton set to be element equality, ie:

i E U} if (i = =j)
The commutativity and associativity of' U ' ensures that the sets:

{a ,b .c ,d} and {b ,a ,c ,d}

are equal, because:

{a}U{b}U{c}U{d} = {b}U{a}U{c}u{d}

As mentioned earlier, the OBJ interpreter which was available does not currently support attri
butes. To make the specification given above executable, the operator' U' was declared without
attributes and the first equation was removed. This effectively defines a list of Nat rather than a
set of Nat, but the difference does not affect the integrity of the overall specification.
The object POLYLlNEJJUNDLE_TABLE can now be defined.

obj POLYLINEJJUNDLE_TABLE I BUNDLE SET_OF_.NAT BOOLEAN
sorts Polyline.Bundle.Table
ops emptyipbt:•Polyline.Bundle.Table

[_•_]: Nat Bundle•Polyline.Bundle.Table
_ + _:Polyline.Bundle.Table Polyline.Bundle.Table•Polyline.Bundle.Table

(pERMUTING)
dom _: Polyline.Bundle.Table•Set.Df.Nat
bundle: PolylineBundle.Table Nat•Bundle

vars i, j: Nat
u.b2: Bundle
pbt: Poiyline.Bundle.Table
s: Set.Df.Nat

I
eqns ((pbt + [i•bI]) + [i....•b2] = pbt + [i....•b2])

(ipbt + [i....•bI]) + U-+b2]= (pbt + U-+b2)) + [i-+bJ] if not (i= =J))
(dom empty.pbt = f1)

I (dom (pbt + [i-+bJ])= {i} U (dom pbl))
(bundleipbt + [i-+bJ], i) = bI)
t bundleipbt + U-+bJ]. r) = bundleipbt, r) if (not(i ==J) and i E (dom pbl»)
t bundletpbi, r) = bundleipbt, J) if notti E (dom pbl»)

These definitions call for some comment. The operators '(_-+-1' and '_ + _' in combination are
used to add new entries to a polyline bundle table. The first two equations state that if an entry
for the polyline index already exists in the table, its representation will be replaced with the new
representation. The second equation also ensures that the sort behaves well with respect to equal
ity, so that the polyline bundle tables represented by the expressions:

(empty _pbl +[l-+b I))+ [2-+b2]

-
- 15 -

and

r

(empty .pbt + [2-+b 2])+[I-+b 11
are equal. The equations can be thought of as defining a finite function.
The operator 'dom' returns the set of indices defined in a table.
The operator 'bundle' provides the representation of a specified polyline index, delivering the
representation of polyline index I if the table does not contain a representation for the actual
index specified. This is the default mechanism that GKS requires. As noted earlier, GKS is ini
tialized so that a representation for polyline index 1 will be defined, though initialization is not
actually specified here.
It is instructive to digress slightly at this point. The specification for
POLYLINEJ3UNDLE_TABLE just given cannot be executed on the OBJ interpreter available to
us, because without the PERMUTING attribute, the second equation causes the interpreter to
loop (it is similar to a commutator equation). To get round this problem an alternative a defini
tion was used, given below.

The second equation is a restricted form of the earlier equation. The restriction j E (dom pbt)
ensures that infinite rewrite sequences cannot arise. To see this, consider:

«Pbt + [1-+bl]) + [2-+b2]) + [1-+b3]

Applying this equation yields:

«Pbt + [l-+bl]) + [1-+b3]) + [2-+b21

The equation cannot now be applied to give the original expression back because:

2 1$ dom «Pbt + [I-+b I]) + [I-+b 3])

The restriction, then, ensures that rewriting makes progress. The price paid for this is that equal
ity is lost, in so far as:

(empty .pbt + [1-+b 1])+ [2-+b 2]

and

(empty .pbt + [2-+b 2]) +[I-+b 11

do not represent the same object, although they ought to. However, since equality over this sort is
not used in the specification, this does not pose any problems.
These definitions again illustrate the power of pattern matching, though it does take some practice
to read and write such equations easily.
The next object, TO_DC, describes the operator to .sic which given a segment delivers the
corresponding sequence of DC polylines, in the same order as the NDC polylines in the segment.

-
- 16 -

! obj TO_DC / SEGMENT POLYLINEJJUNDLE_TABLE DCYICTURE TRANSFORM i

I
ops to.sic: Segment Poiyhne.Bundle .Tabte -+ DCY;cture I.

vars ndc__pI:NDCYolyline !

I
pts: NDCYoints I
pbt: PolylineBundle.Table I

i dcp: D'CPicture
II index: Nat i

s: Segment I
I eqns (to.idctempty.ssegment, pbt) = empty.ide.picture) I
. (tosdcimk sndc spolylinetpts, index) :: s, pbt) = ,
: mk sdc .polylinettipts), index, bundle(pbt, index» :: to.sicis, pbt»))
I jbo

Again, a recursive definition is given.
Lastly, two objects define the sorts: Bundle _Modification .Flag and Implicit .Regeneration . Each
has two values which are distinguished.

obj IMPLICIT___REGENERATION
sorts Implicit.Regeneration
ops ALLOWED, SUPPRESSED: -+ Implicit.Regeneration
jbo

obj BUNDLE_MODIFICATION_FLAG
sorts Bundle_M odification.Flag
ops IRG, IMM: -+ Bundle.Jdodification.Plag

I jbo

4.1.3. The Top Level - GKS and its Operators
Finally, the object GKS is defined. It defines the operations, add __polyline, add .segment ,
redraw .ull .segments and set _polyline .representation on the sort GKS. The constructor of sort
GKS is mk igks , and it constructs elements of this sort from the sorts NDCYicture, DCYicture,
Segment .Store , Polyline .Bundle _Table, Bundle _Modification .Flag and Implicit .Regeneration,
GKS embodies the concepts identified as characterizing the simplified GKS system described in
section 3.

"_
- 17 -

! obj GKS / NDC_PICTURE DC_PICTURE SEGMENT.....sTORE POLYLINEJJUNDLE_TABLE TOJ)C
I BUNDLE_MODIFlCATION_FLAG IMPLICIT_REGENERATION
! sorts GKS
: ops mk .gks: NDC_Picture DC_Picture Segment.Store Polyline.Bundle.Table
! Bundle.Bdodification.Flag Implicit.Regeneration -+ GKS
I add.ipolyline: NDC_Points Nat GKS -+ GKS
I add.segment: Segment GKS -+ GKS
! redraw.sill.segments: GKS -+ GKS
I recreate: DC_Picture Polyline.Bundle.Table -+ DC_Picture
I regenerate: Segment.Store Polyline.Bundle.Table -+ DC_pjclureI set.polyline.representation: Nat Nat Nat GKS -+ GKS
I vars ndcp: NDC_Picture
I dcp: DC_Picture

I
ndc.pts: NDC_Points
dc.pts: DC_Points

I ss: Segment.Store
I bmf: Bundle.Jdodification.Fiag

ir: Implicit.Regeneration
ndcpl: NDC_Polyline
s: Segment

I ~bt:. Polyline.Bundle.Table

I
I, Pi, It, Iw: Nat
b: Bundle

I eqns (add.polylineindc.pts, pi, mk_gks(ndcp, dcp, ss, pbt, bmf, ir» =

I
mk.gksimk.ndc.polvlineindc.sns, pi) :: ndcp,
mk_dc_polyline(t(ndc_pts), pi, bundleipbt, pI)) :: dcp, ss, pbt, bmf, ir))

(add.segmentis, mk.gksindcp, dcp, ss, pbt, bmf, ir» =I mk_gks(s :: ndcp, to.dcis,pht) :: dcp, s :: ss, pbt, bmf, ir))I (redraw_all_segments(mk_gks(ndcp, dcp, ss, pbt, bmf, ir» =
I mk..gksindcp, regenerate(ss, pbt), ss, pbt, bmf, ir))
II (recreatetempty.idc.picture, pbt) = empty sdc.picture i
" (recreatetmk.sic.polylineidc .pts, pi, b) :: dcp, pbt) =
II mk.sic.ipolylinetdc.pts, pi, bundleipbt, rt» ::recreate(dcp, pbl))

(regeneratetempty iss.pbt) = empty.sic.picture y
(regenerate(s :: ss, pbt) = to.slcis, pbt) II regenerateiss, pbt)) I
(set.polyline.representationii, u. lw, mk_gks(ndcp, dcp, ss, pbt, bmf, ir» = I

mk_gks(ndcp, recreate(dcp, pbt + [i-+mk_bundle(lt, lw)]), ss, pbt + [i-+mk_bundle(lt, lw)], bmf, ir)
if bmf = = IMM)

(set.poiyline.representationti, It, lw, mk..gksindcp, dcp, ss, pbt, bmf, ir» = I
mk_gks(ndcp, regenerateiss, pbt + [i-+mk_bundle(lt, Iw)]), ss, I

pbt + [i-+mk_bundle(lt, Iw)], bmf, ir) I
if (bmf = = IRG) and (ir = = ALLOWED)) I

(set.polyline.representationti. It, lw, mk_gks(ndcp, dcp, ss, pbt, bmf, ir» = I
mk..gksindcp, dcp, ss, pbt + [i-+mk_bundle(lt, lw)], bmf, ir) "

if tbmf = = IRG) and (ir = = SUPPRESSED»
; jbo
i

It is worth looking at the add .potyline operator. The equation defining the operator describes its
effect on a state represented by the object:

mk.gksindcp, dcp, ss, pbt, bmf, ir)

The effect of add _polyline is to create a new NDC polyline in the NDC picture and display the
corresponding DC polyline in the DC picture. The result is thus modelled by an object of sort

-
- 18 -

GKS, whose NDC picture component is that of the initial state with the addition of the new NDC
polyline, and whose DC picture component is that of the initial state with the addition of the new
DC polyline. The other components of the object are unchanged. This is what the first equation
above states.
The addsegment operation is similar, but also adds the segment, supplied as argument, to the
segment store. The operator to sdc is used to generate the DC polylines corresponding to the
NDC poly lines in the segment. The operation redraw Jlil....segments generates a new DC picture
from the segment store, recreate redisplays a DC picture with new representations for the polyline
indices used in its creation. The operators regenerate and recreate are really hidden operators
within the data type GKS. The modularization of the specification is not ideal, but is adequate
for this presentation. An alternative modularization might define 'recreate' in the object
DC _PICTURE and 'regenerate' in the object SEGMENT ...sTORE.
The operation set .polyline .representauon adds the representation for the specified index to the
bundle table. and depending on the values of the flags bundle modification flag and implicit regen
eration mode, may also cause the OC picture to be changed.
That concludes the algebraic specification, and is a good point from which to consider the
corresponding VOM specification. The VOM specification consists of a definition of the GKS
state, followed by the operations on this state, and this corresponds closely with the top level of
the OB] specification: the object GKS.

4.2. Tbe VDM Specification
The VDM specification and the OBJ specification mirror each other. The VDM state definition
specifies the following GKS components:

NOC picture
OC picture
segment store
polyline bundle table
and bundle modification and implicit regeneration flags,

and these definitions may be contrasted with the corresponding OB] object specifications. Firstly,
the VOM GKS state definition is given and then the operations over this state are defined.

4.2.1. The state

...

-
- 19 -

DC_Points = list of DC_Point
oc.Point = R x R

, Bundle = Linetype x Linewidth
. Linetype = N
i Linewidth = R
i
! Polyline.Bundie Table = map Polyline.Jndex to Bundle

I Bundle.Modification.Flag = {IRG,IMM}
~1m licit_R.e eneration = ALLOWED, SUPPRESSED

The state GKS consists of the Cartesian product of components of type NDC .Picture ,
DC .Picture , Polyine .Bundle .Table , Bundle _Modification .Flag and Implicit .Regeneration . This
compares with the OBJ object GKS, which is constructed from sorts of the same names, and this
shows how Cartesian product, or its equivalent is expressed in the two notations. The NDC pic
ture is modelled as a list of Component, which may be either of type NDC .Polyine or of type
Segment. The OBJ specification of NDC _PICTURE expressed this by defining two operators for
constructing elements of the sort NDC.Picture - one operator using the sort NDC.Polyline and
the other the sort Segment.
Segments and segment store are modelled as a list of NDC polylines and a list of segments, respec
tively, which again corresponds to the OBJ specifications of these objects, as does the characteriza
tion of NDC .Polyline by a list of its vertices and a polyline index.
The type DC .Picture is modelled as a list of objects of type DC .Polyline , which in turn consists
of three components: a list of vertices (the points in DC space obtained by transforming the ver
tices of the corresponding NDC polyline); the polyline index with which the polyline was created;
and the bundle (linetype, linewidth pair) with which it is displayed. This again follows the OBJ
definitions closely.
The polyline bundle table definition illustrates how a mapping, or finite function, is expressed in
VDM, as compared with the OBJ definition. A mapping is not defined by an expression, but is
constructed by pairing domain and range elements explicitly. The definition states the types of the
domain and range of the mapping.
The comparison of the definitions of the two flags is straightforward.

4.2.2. The invariants
The state is constrained by the following invariants.

let mk_gks(ndcp, dcp, ss, pbt, bmf, iT) = gks ia

Invariant (1)
All segments in the NDC picture must be stored in the segment store:

ss = ndcp r {c ICE elems ndcp 1\ Segment(c)}

Invariant (2)
All point-list (after transformation back to NDC coordinates) and polyline index pairs which are
in the DC picture are also in the NDC picture:

map_to_NDC (dcp) is_sublist_of flatten (ndcp)

- 20 -

Invariant (3)

All point-list (after transformation) and polyline index pairs in segment store are also contained in
the DC picture:

flatten (ss) is sublist of map_to_NDC(dcp)

The auxiliary functions used in these definitions are not further defined here. Full definitions are
given in [I]. The intentions of the invariants should be clear.

4.2.3. The operations
The VDM operation definitions correspond closely with the equations given in the object GKS of
the OBJ specification. For example, the operation add.ipolyline creates a new polyline in the
NDC picture and displays it by adding it to the DC picture with a representation taken from the
polyline bundle table. From both the YDM operation definition and the equation for
add _polyline in the OBJ specification, it can be seen that for every polyline added to the NDC
picture a corresponding polyline is also added to the DC picture.
The other operations, add .segment and redraw iall _segments, mirror corresponding OBJ equa
tions and do not require more detailed comparison. The operation set _polyline .representation in
the YDM specification splits into three separate equations in the OBJ specification and requires
the use of conditional equations. The definition of a mapping and the notation for updating it,
which are illustrated in this operation and the definition of the type PolylineBundle.Table , are
considerably more succinct in VDM than that of the corresponding OBJ specification for
PolylineBundle.Table and its operators.
There are a couple of further interesting points to note. As everything must be encapsulated in an
object in OBJ, it was necessary to package the functions t and to ide in objects: TRANSFORM
and TOJ)C respectively. They need not necessarily have been made separate objects and might
have been included in other objects that had been defined. The idea of defining an object which
defines only a function is interesting and something to get accustomed to. Also of interest is the
way in which the recursive function definitions of regenerate and recreate become operators of the
sort GKS and are expressed using pattern-matching in OBJ.

let mk..gksindcp, dcp, ss, pbt, bmf, ir) = gks in

dcp ' = IO...dC(S,pbt) II dcp

add.polyline: NDCYoints x Polyline.Jndex x GKS•GKS
add.polylineipts, pi, gks, gks ') ~
post ndcp ' = mk.ndc.polylineipts, pI) :: ndcp /I.

dcp ' = mk...dc_polyline(t(pts), pi, bundleipbt, pi» :: dcp

bundle: Polyline.Bundle.Table x Polyline.Jndex•Bundle
bundleipbt, pz) ~ if pi E dom pbt then pbt(pz)

else pbt(l)

I: NDCYoints•DCYoints
add.segment: Segment x GKS....•GKS
add.isegmentis, gks, gks ') ~
post ndcp ' = s :: ndcp /I.

ss' = s:: ss /I.

- 21 -

regenerate: Segment.Store x Polyline.Bundle.Table -+ Dtl.Picture
regenerateiss, pbt) ~ if ss = < > theD < >

else to_dc(hd ss, pbt) II regenerate(d ss, pbt)

i ta.dc: Segment x Polyline.Bundle .Table -+ DCYiclureI to.sicis, pbt) ~ if s = < > then < >
I else let mkndc.poiylinetpts, pI) = hd s iD
i mk.idc.polylinett (pts), pi, bundleipbt, pl) :: lo....dc(ds, pb/)
I
I redraw.iall.segments: GKS -+ GKSI redraw.ialt.segmentstgks, gks') ~
post dcp ' = regeneratetss, pbt)

I
; set.polyline.representation: Polyline.Jndex x Linetype x Linewidth x GKS -+ GKS
i setipolyline.representationtpi, It. lw, gks, gks') ~
: post pbt' = pbt + [pi -+ mk.bundleilt, Iw)] A
I ~bmf = IMM =:> dcp' = recreateidcp, pbt')

I (bmf = IRG 1\ ir = ALLOWED ~ dcp ' = regenerateiss, pbt'))

I
1\

(bmf = IRG 1\ ir = SUPPRESSED ~ dcp ' = dcp)

5. Executable Specifications
As has been mentioned, the OBJ specification given here may be executed by using the data type
equations as rewrite rules. This gives a useful check on the behaviour of the system specified.
Execution was used to explore the specification and this revealed syntactic errors and also
increased confidence levels that the specification did behave as intended and expected.
In order to illustrate the kind of test that was carried, an example follows. Suppose we define:

gkso = mk.gksiempty.ndc.picture, empty.sic.picture, empty.ss, emptyspbt, IRG. ALLOWED)

Then we may ask what is the effect of:

set.potyline.representationu , 1, 1, set.potytine.representationtl, 2. 2. gkso»
By applying the equations describing set .ipolyline .representation we obtain:

mk..gkstempty.ndc.picture, empty.sic.picture, empty.ss,
«empty_pbt + [2 -+ mk.bundlei'I, 2)]) + [1 -+ mk....bundle(l. I)]). IRG, ALLOWED)

This is the term representing the state after both operations have been performed. A variety of
tests of this nature were performed and produced expected results.
This same example has also been formulated in me too, the method for obtaining executable con
structive specifications for rapid prototyping. This, as well as details of the tests that were carried
out, is described in [IS] The same tests have also been executed on the specification described here
using the OBJ interpreter.

-
- 22 -

6. Discussion and Conclusions
The most obvious disparity in the two specifications is the difference in their lengths. However,
one of the reasons for this is that VDM relies heavily on intuitively obvious operators being impli
citly available for data types, whereas in OBJ all operators used have to be defined. OBJ has far
more powerful data structuring facilities than VDM, with its modularity and the packaging of
data types with their operators, which ensures that everything has been defined and leaves no
room for misconceptions due to differing interpretations. So there are tradeoffs between brevity
and complete definition.
It is worth noting that parameterization of the OBJ specification would have reduced its length
considerably. The specification would also have been shortened if the operators implicitly avail
able in VDM were assumed to have been defined in a library of parameterized data types. In
practice the provision of such libraries would be the normal approach in any large specification
project.
An algebraic specification in OBJ closely resembles a functional program. As the VDM specifica
tion was written largely using recursive functions, it is not surprising that the one specification can
fairly readily be directly translated into the other. These similarities are made more apparent by
the use of mixfix, overloaded operators. VDM does also allow the definition of relations rather
than functions in the post-conditions of operations, as well as more implicit and less constructive
operation definitions, and were this exploited, a closely corresponding OBJ specification may not
be derivable.
Reading and writing algebraic specifications initially took more practice than reading and writing
a constructive specification. This could be because of greater previous exposure to constructive
approaches. However, the effort of writing the OBJ specification was effort well spent, for it
. forced us to consider the structure of the problem more thoroughly and this in turn led us to see
how the specification could be built incrementally. The module structure of OBJ is a very useful
structuring tool, which constructive notations seem to lack (however Z is addressing these prob
lems [16]).
The benefits of being able to execute the OBJ specification were considerable. In particular. the
availability of a type checker for OBJ was invaluable. Most of the errors in the first version of the
constructive specification were type errors which a type checker would have found.
The two approaches each lend their own insights to a problem. VDM encourages a more 'top
down' approach to viewing a problem, while OBJ may be used in a more 'bottom-up' style which
gives fresh ideas on how to partition the problem and how to structure the specification. The
overall experience was that the two methods complemented each other.

7. Acknowledgements
We are grateful to Derek Coleman and Robin Gallimore for introducing us to OBJ and for sug
gesting several clarifications and improvements to this paper; and to Peter Henderson for pointing
out how exploiting the power of pattern matching in OB] allows more concise formulation of
equations.

References

1. D. A. Duce, E. V. C. Fielding, and L. S. Marshall, "Formal Specification and Graphics
Software," RAL-84-068, Rutherford Appleton Laboratory, Chilton, Didcot, OXON OXII
OQX, U.K. (1984).

2. D. A. Duce and E. V. C. Fielding, "Better Understanding through Formal Specification,"
RAL-84-128, Rutherford Appleton Laboratory, Chilton, Didcot, OXON OXll OQX, U.K.
(1984).

3. D. A. Duce and E. V. C. Fielding, "Formal Specification - A Simple Example," ICL Techni
cal Journal, to appear (1985).

4. Graphical Kernel System (GKS) 7.2 Functional Description. ISO/DIS 7942, Information

5.

6.

7.

8.

9.
•

10.

II.

12.

13.

14.

IS.

16.

-
- 23 -

Processing (4 November 1982).
F. R. A. Hopgood, D. A. Duce, J. R. Gallop, and D. C. Sutcliffe, Introduction to the Graph
ical Kernel System (GKS). Academic Press (1983).
R. Gnatz, "An Algebraic Approach to the Standardization and the Certification of Graphics
Software," Computer Graphics Forum 2(2/3) (1983).
G. S. Carson, "The Specification of Computer Graphics Systems." IEEE Computer Graphics
and Applications, pp. 27-41 (September 1983).
W. R. Mallgren, "Formal Specification of Graphic Data Types," ACM Transactions on Pro
gramming Languages and Systems 4(4), pp. 687-710 (October 1982).
O. Coleman and R. M. Gallimore, "Software Engineering Using Executable Specifications,"
Oept. of Computation, UMlST (1984).
K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer, "Principles of OBJ2,"
Proceedings of the 1985 Symposium on Principles of Programming Languages (1985).
J. Goguen and J. Meseguer, "Rapid Prototyping in the OBJ Executable Specification
Language," ACM Sigsoft Software Engineering Notes 7(5), p. 75 (1982).
C. B. Jones, Software Development: A Rigorous Approach. Prentice-Hall, Englewood Cliffs,
NJ (1980).
D. Bjomer and C. B. Jones, Formal Specification and Software Development. Prentice-Hall,
Englewood Cliffs, NJ (1982).
P. Henderson, "me too - a language for software specification and model building - prelim
inary report," Computing Science FPN-9, University of Stirling (1984).
C. Minkowitz, "Specification to Prototype - A comparison of two formal methods of
software design," Department of Computer Science, University of Stirling. Scotland (1984).
B. Sufrin, "Towards a formal specification of the lCL Data Dictionary," ICL Technical
Journal, pp. 195-217 (November 1984).

