
-
SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

INFORMATICS DIVISION

SOFIW ARE ENGINEERING GROUP NOTE 111

Dimensional Design Issued by
DR Gibson

Requirements Specification for Prototype, DRAFT 22
21 March 1986

DISTRIBUTION: R WWitty
DR Gibson
M Bertran-Salvans
TPovey,DEC
CEvans, DEC
R&DIDDIDEC fIle

"-..-KEYWORDS: SEGN 111Dimensional Design

History
1 Original draft Author Duncan Gibson. 17th October 1985
1.1 Restructured to use a different style of beadings, etc. Revised to include ideas and comments made

by TomPovey. Author Duncan Gibson. 30th October 1985.
Co

1.2 Revised after a technical evaluation at IOSG, 30th October. See also, SEG Note 80. Author Duncan
Gibson. 8th November 1985.

1.2.1 Revised after a further technical evaluation on 11th November. Author Duncan Gibson. 14th
November 1985. .

1.2.2 Revised after comments from Rob Witty. After providing a Dimensional Design of the document, it
was also restructured. An appendix relating to design issues added. Author Duncan Gibson. 15th
November 1985.

2.1

Revised after technical meetings of 18th and 20th November 1985. Author Duncan Gibson. 26th
November 1985.
Renamed,revised and added to after meeting with Tom Povey on 9th January. Author Duncan Gib
son. 16th January 1986.
Slight revisions after meeting of 19thMarch. Author Duncan Gibson. 21st March 1986.

2

~
2.2

.• ..



-
Specification of Requirements

~rtrategiC Objectives and Executive Summary
Project Summary
Product Summary

Product Goals and Non Goals
Desired Products
Optional Products
Non Goals

Market Definition
The User
Hardware and Software Environment
Services
Competitive Products

Features and Functionality
Conceptual Model of Dimensional Design
Editor
HardCopy
Design to Source
Source to Design
Results Documents

Product Quality Attributes
Human Factors
Performance
Security
Serviceability
Compatability, Standards and Migration
Evolution
Customisation and Personalisation
Portability
Language Independence.

Installation

~Ublications
I
Packaging

I
Training

"'Risks, Dependencies and Contingencies,
fOsts and Timeliness

Priorities, Constraints and Tradeoffs

Figure 1: Dimensional Design showing the high level structure of the Requirements document.

21 March 1986



-
Strategic Objectives and Executive Summary

~.Project Summary

I
Product Summary

Overview of Dimensional Design
Overview of the Dimensional Design Environment

Product Goals and Non Goals

~esired Products
! Editor

HardCopy
Design to Source
Source to Design
Results

I
I
I

I
Market Defmition

~ The User
I
Hardware and Software Environment

VaxStation2 (A3) with (micro)-VMS
VaxStation2 (A3) with UL1RIX
rei, Perq2 (A3) with PNX
BLISS

Optional Productst _

I Prograrruning Support Tools
DD/Source cross referencing tool
Language semantics analysis tool
DD structure analysis tool
Program structure analysis tool
Debugging tool
Performance analysis tool

•Non Goals

Other tools

Version control
Error Handling
Ascii Terminal Interaction

Pascal
C

Services

I .. odCompetitive Pr ucts

Figure 2: Dimensional Design showing the deeper structure of sections 1, 2 and 3 of the Requirements
document

21 March 1986

. ..



-
Features and Functionality

-----conceptual Model of Dimensional Design

I
Editor

Initialisation
Browsing
Layout
Editing
Undoing
Joumaling
Input
Output
Searching
Interrupt Handling
Termination

I

I

I
I
I
Hard Copy
I
I

Design to Source
I
Source tc Design
I
Results Documents

Figure 3:Dimensional Design showing the deeper structure of section 4 of the Requirements document

21 March 1986

,..



-

Specification of Requirements
for a prototype

Dimensional Design Environment

•. DRAFT 2.2"

1. Strategic Objectives and Executive Summary

1.1. Project Summary
1.1.1. To produce the design tools, outlined in the Product Goals, which will make up a working prototype
Dimensional Design Environment for in-house development work by IOSG.
1.1.2. To evaluate and study the use of Dimensional Design and compare it with other design techniques.
1.1.3. To provide a basis for a decision on whether to take the work on Dimensional Design further.

1.2. Product Summary

1.2.1. Overview of Dimensional Design
To be discussed.

'-- 1.2.2. Overview of the Dimensional Design Environment
The Dimensional Design Environment should contain a minimum set of tools to enable the design and
maintenance of software using the Dimensional Design technique.

2. Product Goals and Non-Goals

2.1. Desired Products
2.1.1. Editor: a tree structured syntax driven editor, capable of dealing with multiple languages, which
provides a Dimensional Design interface to the user. The editor must be able to take a syntactically correct
"program source" as input, whereas a Dimensional Design given as input may be incomplete as far as the
target syntax is concerned.
2.1.2. Hard Copy: a tool, or set of tools, for producing hard copy output of a Dimensional Design. A char
acter cell printer is the minimum requirement; better quality devices are to be investigated.
2.1.3. Design to Source: a tool which will generate a program (or other, such as a text formatter) source
me from a Dimensional Design.
2.1.4. Source"to Design: since the editor is syntax driven, this conversion can be made by running the edi-

'-- Lorin "batch" mode. "
2.1.5. Results: documents relating to the results of the evaluation and study of Dimensional Design.

2.2. Optional Products

2.2.1. Programming Support Tools
These are things which will aid the use of Dimensional Design as a software engineering tool. The tools
can be divided into two main categories: those which will be used on program source code and are there
fore static in nature, and those which will be used in conjunction with a running program and which are
dynamic in nature. The set of static tools which could be provided might consist of
2.2.1.1. DD/Source cross referencing tool. This would enable a user to find the part of a Dimensional
Design which corresponds to a given line of source, and vice versa.
2.2.1.2. Language semantics analysis tooL A tool which would check the semantics of generated source,
for such things as undeclared variables.

21 March 1986

..•



-
-2-

2.2.1.3. Dimensional Design structure analysis tool. This would provide some statistics which may show
the effectiveness of a particular Design, such as the average number of refinements per node.
2.2.1.4. Program structure analysis tool. A tool for gathering statistics about a program, such as the aver
age number of statements per procedure, which could be compared with figures obtained for the structure
of the Design.
The set of dynamic tools would be far more difficult to implement, but might contain such things as
2.2.1.5. Debugging tool
2.2.1.6. Performance analysis tool
where output or feedback is produced in terms of an annotated Dimensional Design.

2.2.2. Other Tools
To be specified.

2.3. Non-Goals
The tools produced during the course of this project should be viewed as prototypes, and a means of gen
erating interest in Dimensional Design, as well as highlighting areas for further research. With this in
mind, the following areas will not be investigated, or incorporated into the DDE tools.
2.3.1. Version control: exactly how different versions of a Dimensional Design, and any derived source
code or hard copy, etc, are related is external to the Dimensional Design itself. A tool which will track ver
sion numbering will not be provided within the DDE.
2.3.2. Error Handling: when used in "batch" mode, the editor will fail at the first syntax error, if the input
is not syntactically correct However, in interactive use, the editor will notify the user that an error has
been made, and then force the user to correct the error, before allowing the user to continue. However,
Dimensional Designs which are not complete, but which remain syntactically correct by use of some
meta-symbol which matches any missing sections for example, must be taken into account
2.3.3. Ascii Terminal Interaction: The graphical tools of the DDE are not intended for interactive use from
character cell terminals, such as a VT100. The tools are intended for use on a high resolution graphics
workstation. This does not mean that tools cannot be run in batch mode from ordinary terminals.

3. Market Defmi1ion

3.1. The User
The Dimensional Design Environment is intended to be used by computer professionals, such as software
engineers and technical secretaries, who are at ease with interactive tools. The user must be aware of some
of the underlying architecture, such as the file system. The DDE is not aimed at non-technical staff who
are not keyboard/mouse literate.

3.2. Hardware and Software Environment,
The Dimensional Design Environment is intended to be used on a high resolution graphics workstation
which allows user interaction via a puck, or mouse. The graphical tools should run within any window
management system which may exist. The DDE should also allow the use of a local (or possibly even
wide) area network so that a distributed design team can share common resources. The possible environ
ments are:
3.2.1. VaxStation2 with A31andscape screen running (Micro)-VMS
3.2.2. VaxStation2 with A31andscape screen running ULTRIX
3.2.3. ICL Perq2 with A3 landscape screen running PNX
The initial target machine is the VaxStation2 running (Micro)-VMS, but it is planned to use a VaxStationl
for development purposes. Both ULTRIX and PNX are proprietary versions of UNIXt

t UNIX is a Trademark of Bell Laboratories,

21 March 1986



-
- 3 -

The DDE must be able to handle multiple languages, and so the project must aim to provide support for the
following:
3.2.4. BLISS: for use within IOSG
3.2.5. Pascal: for use at RAL, and for the DDE development
3.2.6. C: for use atRAL (optional. if time permits)
The DDE, or rather the Hard Copy tool(s), must provide support for a character cell output device as a
minimum requirement, Methods of using better devices, eg those with higher resolution or graphics capa
bilities have yet to be investigated.

3.3. Services
Not applicable.

3.4. Competitive Products
To be investigated.

4. Features and Functionality

4.1. Conceptual Model of Dimensional Design
'-- For ease of discussion, let us consider the simplest conceptual model of a Dimensional Design as a tree

where each node in the tree is either a single character or a subtree, and that it is enclosed within a cuboid.
Nodes may be connected via arcs to show the structure of the Design, and its associated implementation.
Note: the actual model may differ from the conceptual one for performance or implementation reasons.

4.2. Editor

4.2.1. InitiaIisation
The editor must allow the user to create a new Dimensional Design, and also allow for the manipulation of
existing Designs. To provide some degree of security, especially during the prototype stages, the editor
may only read existing Dimensional Design files, it may not overwrite them. The user will be forced to
create a new file for a new Design, or new version of a Design. The editor will not provide any form of
version control or tracking however.
4.2.1.1. When it is invoked initially, the editor must establish the Dimensional Design which is being
edited or viewed. This may involve providing a minimum empty framework within which to build a new
design, or it may simply involve reading an existing file and taking some action on its contents. This action
should occur as quickly as possible.
4.2.1.2. The editor must be able to establish a window into the Dimensional Design which will appear on

'---- the screen in some form. This action should occur as quickly as possible.

4.2.2. Browsing
The editor must allow the user to view the Dimensional Design which is being edited, and allow the user to
move around within the Design. This is known as browsing, and does not produce any change in the
underlying Design. All of the browsing actions should occur as quickly as possible.
4.2.2.1. The user must be able to pan through the Dimensional Design, ie change the location of the win
dow into the Design.
4.2.2.2. The editor must allow the user to change the size of the window into the Design.
4.2.2.3. The editor may allow the user to zoom into/away from the details of the Design by using some
scaling technique. This may be achieved by a reduction/expansion scheme, which is more properly dealt
with in the section on Layout, or by changing the size of font, etc., displayed on the screen,
4.2.2.4. The user may be able to insert some placeholder into the Design, analogous to a bookmark. so that
the user can move between such points with relative ease.

21 March 1986

...



-
- 4-

4.2.2.5. The editor should provide a means of showing the user where the current window is in the context
of the overall design. This may be achieved by some sort of 2-D meter. .

4.2.3. Layout
The functions outlined in the previous section simply allow the user to move around within the Design,
without changing the underlying design, or changing the actual appearance of the Design. The user may
wish to change the actual appearance of the Design, without changing its underlying structure, by altering
the properties of the displayed Design.
4.2.3.1. The user must be allowed to change the properties of character atoms, such as the font used for
display, or the character size, etc.
4.2.3.2. The user must be allowed to change the properties of the connecting arcs, such as length, thick
ness, etc.
4.2.3.3. The user must be allowed to change the properties of the enclosing cuboids, such as visibility, etc.
4.2.3.4. The editor must provide a means of displaying the Design in a more compact form by allowing for
white space compression. This is graphical white space, as opposed to textual white space, and may be
achieved by providing a set of alternative drawing algorithms, in addition to the standard drawing method.
4.2.3.5. The editor should provide a means of removing all textual information from the screen so that the
user can see the structure of the Design as a skeleton of connected arcs.
4.2.3.6. The editor should allow the user to compress a node within the Design into some stub representa
tion, and also allow for the expansion of such a stub, in order to remove screen clutter. This compression
may be applied to terminal and non-terminal nodes of the Design.
4.2.3.7. The layout system must be able to handle common subtrees in some way.

4.2.4. Editing
The functions described in the previous sections will enable a user to move around within a Design, and to
change its appearance on the screen. The most obvious application of an editor is to change an object!
4.2.4.1. The editor must allow the user to create a node.
4.2.4.2. The editor must allow the user to insert a node into the tree.
4.2.4.3. The editor must allow the user to delete a node from the tree.
4.2.4.4. The editor must allow the user to copy a node of the tree.
42.4.5. The editor must allow the user to move a subtree.

4.2.5. Undoing
TIle user must be allowed to undo an action. This is crucial if the user is to be allowed to experiment
within the editor, without being frightened of losing several hours of work by exploring new possibilities.
An undo function also provides the user with some recovery after an inadvertent button press or key stroke.
As this is one of the most difficult functions to provide, the prototype editor will only have a "best attempt"
at recovery.

4.2.6. Journaling,
The editor may provide a record of operations, or journal, so that the following functions can be achieved:
4.2.6.1. Playback: the user or, more importantly, a more expert user can replay part or all of an editor ses
sion to see why the editor produced the results that it actually did, which may not have been what was
expected intuitively. In the prototype version this can be used to aid troubleshooting.
4.2.6.2. Demonstrations: the features and capabilities of the editor can be shown to an audience for train
ing, or exhibition purposes.
4.2.6.3. Checkpointing: the editor may save the state of the session at various points, and all journal opera
tions are recorded relative to the last saved state.
4.2.6.4. Macro facility: if it is possible to generalise the journaling function, it may then be possible to

21 March 1986

...



-
- 5-

provide a macro system.
Clearly, if it is possible to reverse the journal of recorded events, then this would provide one method of
implementing the undo action. It may also then be possible for the user to undo an undo action, ie to play
an event tluough backward and forward, several time over if need be.

4.2.7. Input

4.2.7.1. The editor may be used in batch mode, as well as interactively, but this document will not say how
the interaction will be made, what form of commands are used, or screen designs, etc.
4.2.7.2. The editor must be able to handle input of syntactically complete sources, eg program sources
which will compile, but it must also handle Dimensional Designs which are incomplete as far as the same
compilers are concerned, but which maintain their integrity by use of some meta-symbol for example. The
editor may need to handle input which has been generated via a journal facility, if there is one.
NOTE: The format of the Dimensional Design file, and indeed the journal file, are design decisions. How
ever, there is a requirement that these files be in a form suitable for transmission and exchange between
systems and tools.
4.2.7.3. The editor should allow the user to work on more than one Dimensional Design at a time. Multi
ple buffers should be taken into account during the design phase, although the prototype need only provide
a single buffer.
4.2.7.4. The editor must be able to handle Dimensional Designs which may span several files. For exam
ple, a software project may have been partitioned into several distinct modules, each of which has its own
Dimensional Design. The overall Design may contain references to these modules. This may be achieved
using an "include" mechanism. The user should be able to expand/compress such references. These refer
ences may occur more than once in the overall Design, and may give rise to a common subtree (see Lay
out).

4.2.8. Output
See above.

4.2.9. Searching
The editor must allow the user to search for an item or items which exhibit a particular set of properties. In
this instance, an item may mean an arc, node, character atom, cuboid, some means of generating a particu
lar subtree structure, etc. Possible properties of items are outlined elsewhere. Since the editor is syntax
driven, the user must also be able to search for syntactic entities.

4.2.10. Interrupt Handling
The editor must be able to handle user level interrupts in a sensible fashion. The user may want to abort or

\..__cancel an ope~ation using an.interrupt, so the editor must take the appropriate action.

4.2.11. Termination
4.2.11.1. Under normal conditions, the editor should make a series of checks before it terminates, and ask
the user for confirmation of intent depending on the results. For example, if the user modifies a Dimen
sional Design .during the course of a session, and tries to quit without writing the changes back to file, then
the editor should prompt for confirmation.
4.2.11.2. If the editor terminates abnormally for some reason, then it should provide some failsafe action,
if possible, such as writing the modified Designs into files.

4.3. Hard Copy
4.3.1. The hard copy tool must be able to take a Dimensional Design me as input and produce output
which will cause a printer, or plotter, to "draw" the Dimensional Design.
4.3.2. The hard copy tool must be able to produce a standard version of the Dimensional Design, with all
nodes and included references expanded, etc.

21 March 1986

...



-
-6-

4.3.3. The user should be able to specify that the hard copy tool produces a listing of the Dimensional
Design in the same form as it appeared on the editor screen, ie with appropriate nodes compressed, or hav
ing visible cuboids, etc.
4.3.4. The hard copy tool should be able to print a subtree of the original Design if that is what the user
selects, by some marker in the Design possibly. The obvious default action is to draw the whole tree.

4.4. Design to Source
4.4.1. This tool must take a complete Dimensional Design, ie one without any meta-symbols which may be
present during the editor stage to maintain syntactic integrity, and produces output which meets the target
language syntax rules. For example, a Dimensional Design of a program should give rise to program code
which satisfies the syntax analysis of the compiler, even though it may not actually compile for semantic or
other reasons.
NOTE: A Dimensional Design may have target language dependencies which mean that it cannot be retar
getted for another language automatically!
4.4.2. The Design to Source tool is intended to be a batch system, even though it may be initiated interac
tively.

4.5. Source to Design
This may be achieved by using the editor in batch mode. The source me must be syntactically correct
though.

4.6. Results Documents
These should be presented as a series of evaluation reports which discuss:
4.6.1. the use of Dimensional Design in the development of the DDE;
4.6.2. the results of controlled experiments into how designers use the DDE;
4.6.3. the results of the use of Dimensional Design in a project, especially when compared to similar
methods in use in other projects.

5. Product Quality Attributes

5.1. Human Factors
5.1.1. The DDE should be easy to use by a prcfessional programmer,
5.1.2. The DDE should provide some basic help facility, or even some computer based instruction.
5.1.3. The prototype design should allow for the inclusion of measurement metrics, for evaluation pur
poses.

5.2. Performance
5.2.1. When used interactively, the editor must be able to keep up with the user. Those tools which are to
be used in batch mode may take significantly longer.
5.2.2. The editor should present some screen based feedback to the user within about 4 seconds. Obvi
ously, this will depend on the design decisions. During use, the editor should provide feedback indicating
what is happening, or what actions are available, as soon as possible.

5.3. Security
5.3.1. The VMS version of the DDE must do nothing to jeopardise the VMS file security, ie the DDE tool
set only has the default user priviledges.
5.3.2. Similar limitations apply to the UNIXversion of the DDE.

21 March 1986

...



-
- 7 -

5.4. Serviceability
5.4.1. Availability: not applicable.
5.4.2. Reliability: not applicable.
5.4.3. Maintainability: the project itself should use Dimensional Design to ease maintenance of the
software. Coding standards should be adhered to wherever possible.
5.4.4. Auclitability: the prototype should provide an option which allows a skilled user to track the
behaviour of the tool.

5.5. Compatability, Standards and Migration
5.5.1. The DDE must accept files generated using any existing Dimensional Design related software. A
group at the University of Linkoping in Sweden produced the Dimsys software. Research work is also
being carried out at the School of Telecommunications of the Polytechnic University of Catalonia in Bar
celona. This does not mean that the DDE should be tied to the file format that either of these groups use:
the use of a Dimsys file, or one from the Spanish system, may be achieved using some translation tool.
5.5.2. The project must investigate possible formats for DDE files, and also how various languages are
represented and generated. (There is a risk of initial formats being accepted as the de facto standard which
will then prove difficult to change!)

5.6. Evolution
The design of the prototype should allow for the evolution and addition of further features, as discussed in
sections 2 and 4.

5.7. Customisation and Personalisation
The user should be free to change any language definition and provide additional constructs as and when
required. However, such changes may need to be made for every stage of rule .generation, input parsing
and code generation.

5.8. Portability
As the DDE is ultimately intended to run on 2 machines, and 3 operating systems, then portability issues
must be considered at every stage of the design and implementation.

5.9. Language Independence
In order to keep the DDE independent of any particular natural language, such as English, all textual input
and output undertaken by the user interface must be parameterised. All messages used by the DDE should
have a unique index, so that the text used by any particular language may be held in a separate message
file, rather than hard coded into the system.

'-- 6. Installation
6.1. The VMS version of the prototype should use VMS Install.
6.2. The installation of the system under UNIXhas yet to be investigated.

7. Publications
The project should aim to produce user guides of some sort, where the minimum set is
7.1. "A Guide to using the DDE" and
7.2. "A Quick reference card for the DDE"

21March 1986



-
- 8-

8. Packaging

Not applicable.

9. Training
The users taking part in the evaluation must receive some training and support from the project team.

10. Risks, Dependencies and Contingencies
to be discussed.

11. Costs and Timeliness
to be discussed.

12. Priorities, Constraints and Tradeoffs
to be discussed.

21 March 1986

..•



-
Appendix Z: Issues
The issues which were presented. as part of the requirements specification in previous drafts are being used
as the basis of a high level design document, and so will appear elsewhere .

.'

...


