4.8/1

4.8 The Shifting Instructions

Four instructions are provided which shift the number in Ba. These
shif'ts are either of six places up or of one place down, and are circular
shif'ts. That is, digits which are shifted out of the register at one end
re-appear at the other end.

o The smws purpose of these instructions is to assist in the manipu~

lation of 6«bit characters and to provide ways of shifting ba any specified

number of places.
Function

Description Notation

105 Shif't ba up 6 places, copying
the initial 6 most-significant
bits into the least-significant
6 bits, then add s into ba ba’ = 2°ba + s,

(cireular shift)

125 Shift ba as in 105, then add n ba' = 2°ba 4+ n,

(circular shif't)

143 Shift ba down one place, copying
the initial least-significant
digit into the new most-signifi-
cant position, then subtract s

ba' = 2%ba - s,
(circular shift)
163 Shift ba as in 143, then -
subtract n ba’ = 27*ba ~ n,
(circular shift)
These basic instructicns are intended to be used by extracodes
which provide more useful shift functions.

( 165 )

L.
—

- - - o

- aw aw e mw  @m )

4.9/

449 The 0dd/Even Test Instructions

Two further test instructions ean be used to test the least-
significant bit of Bm. These instructions can be used, for example, to

identifly a character address.

Function Description Notation
210 If the least-significant bit in If ®m is odd,
Bm is a one, place n in Ba ba’=n

211 If the least-signifi
Bm is a zero, place

If bm is even,
ba’ =n

cant bit in
n in Ba

Note particularly that it is the very least-significant bit that
is tested, and that if Bm contains an address these instructions do not

detect whether the address refers to an
store, but rather whether it refers to
within the word.

Examples

Bl contains a character ad

even or odd numbered word in the
an even or odd numbered character

dress, A.k saye Place this char-

acter in digits 18 to 23 (character position 3) of B2 and clear the

rest of B2 (digits 0 to 17)

0 101 2 1 0
1 210 127 1 S
2 125 2 0 0
3 163 1 1 0

4 211 127 1 7

5 125 2 0 0/
)

6 125 2 0 OA

7 127 2 0 7.7

Read the half-wvord into B2
jump if k is W1 or «3 in the half-word
shift up and round six places

shift b1 down and round one place,
then subtract the original contents
of B1 from this. This makes b1 even,
if k is 0 or ‘0d

jump if k = w0 or 3 in half-word
shift up 12 bits, circularly. The
required character is now in 63

of B2

clear the unwanted digits

A similar program to this is obeyed, under extracode control, when
the programmer specifies extracode 1250,

1250 Ba Bm 5

places charaoter s in Ba, clearing the

other digits of Ba. So the ex-

ample above would be simply achieved by

1250 2 1 0

( 1.65 )



=

4,10/1

4,10 Restrictions on the Use of B-registers

Although B81-B119 were included in section 4.1 as general purpose
B-registers, they are of limited utility for the ordinary programmer, since N
they are each used by one or more of the system routines which may mmmcsm
oos.nwo.u. during the running of the object program. Before using any of these
B-registers, the B-test register, the substitution register, or the B-oarry

digit, the programmer must check to see that there is no danger of their 5
contents being overwritten before he has finished with them. =
The routines which use these B-registers are as follows:- g
B81-89 Library routines
B9O Return link from library routines B
BO1-97 Extracodes |
B98-99 The logical Accumulator and some less common 5
extracodes
B100-110 Supervisor ;
B111-118 Interrupt routines !
B119 Extracode operand address ] ‘
B121, 122 Extracodes, library routines
Bt, Bo Extracodes, library routines i |

Tt should be noted that the library routines may use extracodese
This means that when library programs are in use, no B-line above B8O
should be used (except for B90). Provided no reference is made to library i
routines, B&! - BY0 may be freely used. Similarly B81 to B99, B119, B121,
B122, Bt and Bo are safe to use when neither extracodes nor library rou-
tines are in use. It is never safe for an ordinary program to use B100 - i
B118, since an interrupt can occur et any time and cause control to be L
transferred to the Supervisor. I _

(165 ) 0"

44 o

4,14 The B-carry digit

R AT T A T

When any one of the four addition codes

104 ba’ =ba + s
114 s’ =ba +8
124 ba’ =Dba +n ‘
164 ba’ =ba + (bm & n)

is used to add two 24-bit quantities, bit 25 of line 6 of the V-store is
set to 1 if there is a "carry’ from the addition.

Thus for example the addition of any two 94-bit numbers whose left-
nost bit is a 1 sets the 'B-carry digit’ to one. If there is no ‘carry’,
the B-carry digit is set to 0. Vhen an ABL progrem is entered the B-carry
digit is clear.

The singly-modifed extracode 4923 loads Ba with n if the B-carry
digit is set to 1 and does nothing if it is not set. (The extracode does
not affect the state of the B-carry digite) The following example uses
41923 to add Bl to B2 and then add the ‘carry’, if any, to the bottom of B3,
Thus the contents of Bl and B2 are here regarded as 24-bit positive integers
whose double length sum is placed in B and B2 with the most significant

half in B3.

Lxemple,
124 2 1 0
1223 ) 3 Y1

Similarly each of the ten instructions

100 ba' = s - ba 102 ba' =ba - s
110 s’ =s - ba 112 s' =ba ~ s
120 ba' =n - ba 122 ba' =ba - n
150 bt’ = s ~ ba 152 bt! =Dba - s
170 bt =n - ba 172 bt! =ba - n

set the B-carry digit to 1 when, regarded as 24-bit positive integers, a
larger number is subtracted from a smaller, Otherwise these codes set B-
carry to zero. For example, the B-carry digit is set to 1 by the instruc-

tion 172, 0, 0, 1.
Ixample:

In the previous example b1 was added to b2 and the double
length sum held in B3 and B2. The following two instructions
would subtract b1 off again from the double length sum.

122 2 1 0
1223 3 3 -Y4
(165 )



e =

[ - .

s

8ut /4
Chapter 5
ROUTINES AND DIRECTIVES
5.1 Routines, Subroutines and Symbolic iddresses

For convenience in writing a large progran it is broken down into
parts, called routines. Each routine usually perforns some particular step
in the calculation, and the routines once decided on, nay be written in any
order and then assembled together to form a program.

Many routines, for example one which finds the cube-root of a nunber,
are useful in assisting other routines. Such routines are called subroutinese
The programmer may well write his subroutines before the major routines and
have his own system of entry and exit from them so that more than one routine
can call on a particular subroutine. Generally useful subroutines which have
been written for use in any program form a "Library" of routines.

In general subroutines may be "open" or "closed". An open subroutine
is simply a group of instructions which may be inserted anywhere in a programe
When they are required to be executed, control passes to the first instruc-
tion; after the subroutine the next instruction after the group is obeyed.
This has the disadventage that the group of instructions has to be copied
into the program wherever it is to be used.

A closed subroutine is one which is entered by Jjumping into an entry
point, often the first instruction, and which ends by returning control to an
address set by the program before entry. This exit address, called the "link",
is normally by convention set in B90 for the Library routines; these then end
with the instruction

121 O e a2 0 Copy the return address set by the progranm
in B90 into control.

Particular examples of closed subroutines are the ®extracodes" in
Atlas. These are called automatic subroutines as entry to them is automatic
on an extracode instruction being met. Exit fron them is nornally to the
next program instruction, with no link needed.

Within any routine there may be many Jjunp instructions. It is in-
convenient to have to work out where each routine would be in the store so
that the addresses for these instructions can be specified. Also, insertion
of an extra instruction into a program written with actual addresses might
mean that many addresses had to be altered. Addresses are therefore allowed
to be defined by neans of parameterse. Using these, any address can be re=-
ferred to in a "floating" form. Each time the program is read into the com-
puter, the input routine -assembles the true machine addresses and inserts
these in place of the parameters.

Besides the instructions themselves, certain additional information
has to be provided with the program. This information is:

(1,65 )




(a) Where the program is to be located in the store,
(b) Which library routines are required.
(c¢) The identification of routines, program titles, etec,

A@v Where control has to pass to in order to start obeying the
program,

This information is provided by means of directives. Except for (b)
these do not produce any actual program within the computer.

In general, directives are simply identifying letters (followed some-
times by numbers) or equations which define the values of parameters.

Instructions, floating-point numbers, half-word numbers, six-bit
characters and directives will be collectively referred to as "items". A
complete program can then be regarded as a list of items.

Items are terminated by multiple-space, comma or New lines Depending
on the input media, which may be 7-track or 5-track paper tape or punched
cards, the programmer will use whichever terminator is most convenient.

For simplicity we shall assume that the input medium is 7-track paper
tape punched on a Flexowriter, and then state the altermatives for the other
media., Multiple-space is defined as two or more consecutive spaces, which
can also be achieved by using the character Tabulate on the Flexowriter,

Routines are introduced by the letter R followed by a routine number
in the range 1 to 3999, They are terminated either by the directive Z, or
by R followed by a new routine number, or by one of the directives which
cause the program to be entered., Any program material not introduced by a
routine number is automatically assigned to routine O,

A complete line of ABL input is read, and an image of the print-out
is formed, taking correct account of the characters SPACE, BACKSPACE, and
TAB., TAB is interpreted assuming 9 fixed TAB positions, at 8, 16, 24, 32,
and then every 16 up to 112, character positions from the left-hand margin;
TAB always moves the current ‘carriage position’ along at least two char-
acter positions., A maximum of 128 character positions along the line is
allowed for; any characters beyond position 127 are ignored. A backspace a
beyond the left-hand margin is ignored.

In interpreting a line, ERASE, or a composite character including a

1
5,4/2 ol g —‘
!
|

5.2/1

542 Routine Parameters

Within any routine, up to four thousand parameters may be used,
numbered from 0 to 3999, Parameters 1-3999 can be set up by directive
equations or by labelling items (other than directives).

When a parameter is set by an equation, or referred to generally,
it is preceded by the letter A,

A1 = 100,4 sets parameter 1 of the current routine to the
40.“_.‘.5.0 A OO. 4

When a parameter is set by labelling an item it is written before
the item and separated from it by a right-hand bracket.

1) 121 2 o o

The parameter then has a value equal to the address at which the item so
labelled is finally placed. Hence, other instructions which refer to Al are
not affected by the insertion or removal of instructions in between them~
selves and the labelled instruction.

We have up to now always written the address part of an instruction
as a number, either as a decimal number with an octal fraction or as a string
of octal digits. In fact, the writing of an address may be done in a great
many ways. In particular, parameters may be used to set up addresses, or
parts of addresses. Thus

121 127 0 A1 causes a jump to the location whose
address is defined by Al.

Example:

Routine 1 of a program is to clear store locations 512-1535
to floating-point zero for working space and then exit to some as
yet unknown address

ERASE, is everywhere ignored (exsept in circumstances where a direct copy of
a string of characters is called for ~see section 5,10 = C and CT directives
- and section 5.13 - T directives, or with the ZL record in library routines

- see section 12,7)e

The character small 1 is an illegel character. Otherwise ABL treats
upper and lower case letters as being identical. The letters O and I are
treated as alternatives to zero and one.

( 1,65 )

F
\

)

ke

Ed

R1
324 0 0 A set am’ = 0
121 7 0 1023 set b7 = 1535-512
2) 356 0 7 52 store, modified
203 127 7 A2 count, jump to A2
121 127 0 A3 exit to A3, not yet set
1) 40
meoﬁm the program could be run on the computer, A3 would have to be
sete.

AQ in each routine c annot be set by the programmer; it is auto-
matically set equal to the address of the first stored item of the routine
(usually an instruction). AO can be abbreviated to A.

( 1.65 )



5.2/2

To permit cross references between routines, paremeters are more
generally referred to as Am/n, meaning parameter m of routine n, If the

/n is omitted the parameter is

wxmamHom“
1. A3/M5 = J77

2. R5
101 10 0
214 127 10
1/6) 217 127 10

A
A2
Ad

taken to belong to the current routine.

Sets parameter 3 of routine
15 to J77

wxtract half-word at A1 of R5
If b10 = zero, jump to A2 of R5

his instruction is labelled A1
of R6, so that R6 may refer to
it.

An item may be labelled more than once., Thus

\_\m,v m\q,v ,& 121 127 A

( 1.65)

sets 41 of R6, A2 of R7, and
A3 of the current routine to
the address of this instruction.

9

5,3/

503 Preset Parameters

These are identified by the letter P followed by the parameter
number. One hundred preset parameters PO to P99 are m<mHHmcHw %ow.bouamw
use, although certain parameters with numbers greater than this exist, and
have special effects. (see section 12.5)

Unlike routine parameters,preset parameters are not associated _
with any particular routine, but are meant for use by the program &s a whole,
They can only be set directly by equation, and not by labelling; they may
not be referred to before they have been set. Preset @m&mawdmwm are set
immediately they are encountered, and hence everything on the right hand
side of the equation must itself already have a value.

Preset parameters may be reset by further equations, ﬂbﬂ may also
be unset, using the symbol U, followed by the parameter numbers

Ua will unset Pa
Ua~b will unset Pa to Pb inclusive.

Preset parameters may also be set and unset by program, using some
of the special parameters listed in section 12.5,

(1.65 )



5.4/1

5ed Global Parameters

These are identified by the letter G followed by the parameter
number (0 to 3999).

Like routine parsmeters, global parameters mey be referred to be-
fore they are set and cannot be unset. But, like preset parameters, they
nust always be set explicitly by means of an equation and not merely by
labelling an item. j

Global parameters are not associated with any particular routine,
and they therefore supplement preset parameters as universal parameters for
use by all routines.

el

(1.65) 4

-
= e - _— g - . -

5.5/

545 Optional Parameter Setting

This facility can best be described by means of an example:-

The library routine IL100 uses a parameter, A24, to specify the max-
imum number of characters permissible on a line of input, which determines
the amount of working space needed to hold one line at a time, The pro-
grammer may arrange to set A24/I1100 outside this library routine, but if he
neglects to do so then 1100 will itself set .24 to the value 160.

Such an opticnal setting is obtained by using the symbol ? before
the = sign in a parameter setting directive within the subroutine. This
has the following effects:~

(a) For preset parameters. The directive is ignored if the para-
meter is already set, otherwise it is immediately implemented.

(b) For routine parameters and global parameters. The directive is
ignored if the parareter has been set by the time the next
enter directive is encountered, otherwise it will be implemented
at that time.

The library routvine I100 contains the directive

A24% = 160

and if the programmer wishes for a different setting he must set 424/1400
in his program. (see section 5.12.)

(165 )



5.6/1

It is now necessary to explain the many ways in which addresses ocan
be built up,

The general form of an address is an "expression®, and the Ba and Bm
parts of an instruction, 6-bit characters and half-word numbers can also be
formed from expressions.

Basically an expression consists of a mixture of parameters and con-

wmwaﬁm which are combined together according to some relatively simple
€Se

We have written most constants as a decimal number with or without
an octel fraction, that is as b or b.c, where b is the decimal number and o
is the fraction. b goes into digits 0-20, ¢ into 21-23., More generally,
one can write atbe.c where b and ¢ are as before and a is a decimal number
which is added into digits 0-11. The main use of a is to set up multiples
of 512 in the address digits,

Alternative forms are:-

atb.c
asb
a:
bec
b

Examples:

1:35,6 is, in octel, 00010436
2: is 00020000

The symbol \ may be used instead of :, as : does not occur in the S5-track
paper tape or card codes.

y The letter Y followed by a decimal number has the effect of posi-
tioning the number from the least significant end of the register instead
of one octal place up. Thus

Y19 is 0000002%
as opposed to 19 which is 00000230,
We have also written numbers in octal, preceded by J or K.

J followed by a string of up to eight octal digits assembles these
from the most-significant octal position and right-hand zeros may be
omitted,

K followed by a string of up to seven octal digits assembles these
from the right, starting at bit 20, and more-significant zeros can be o-
mitted. Vriting .c after these numbers, where ¢ is again an octal digit,
places ¢ in digits 21-23.

( 1,65 )

-

n

= .

\za

o Imam (S 2T - - - T T e

| — | - -

— |

5.8/2

Exanples:
1, Jo4103 is 04103000
2, K37 is 00000370

It is also possible to form a number by writing a constant or para-
meter which is followed immediately by one or more of five “operators”. _
These operators allow numbers to be shifted up or down logically, allow
the extraction of the ‘block address’ digita or ’oddress within a block’
digits, or form the logical binary complement of a number.

We shall use the term "element" to mean either a constant or a
parameter, or one of these followed by one or more operators.

The operators are as follows:-
(a) Dn where n is a decimal integer. This causes the previous element ‘o
be shifted down logically by n places, i.es, shifted down without dupli=~
cation of the sign digite coZe
21 121 0 100D1
is an alternative to writing

121 121 0 60

and sets b121 pointing at B100, for use in conjunction with b122.

(b) Un causes the previous element to be shifted up logically by n binary

places (i.e. multiplied by mbv. €efe

121 124 0 13012
sets the exponent digits 0-8 as A3, (This is more convenient than having
to work out the number in octal in the appropriate places )

(¢) B gives the block address, i.e. bits 0-11, of the previous element,
with bits 12+23 made zere.

(3) W gives the address within a block, i.ee bits 12-23, of the previous
element, with bits 0-11 made zero. :

(e) ! (prime) gives the logical binary complement of the preceding
element, €e8e ,

121 2 0 J’
sets b2 = J67777777

The use of ' is mot encouraged, because it is a symbol so easily
overlooked in a program print-outs

(-85 )




5.7/1

5.7 Separstors

Hlements can be combined together in many different ways to form
a final expression,

(1) ©Elements may be added or subtracted.

Thus 3 + A, A = 3, A 4+ A2 - A3 4+ 6D1 for example, are all
allowed., Where the next element is to be added, the + may be omitted if
there is nc possible ambiguity. Thus, equivalent forms of the three ex-—
amples above are 3A1, =3A1, A1A2 - A3 + 6D1. In the last case, the final
+ cannot be left out as this would form -A36D1.

Exampless
324 0 0 3A1 Sets am’ = contents of the third
location after the address given
.Uu\. At
124 127 0 -2A16/3 Causes a jump to the instruction

two before the address given
by A16/3.

ii) The logical operations AND, non-equivalence, and OR can be
performed between two elements. The symbols for these are &, N and V
respectively. M is an alternative to &. _

Example:
K77.7&A2

Extracts the least-significant 9 bits of A2 and
sets the other digits to zero.

iii) Elements may be multiplied and divided. The symbols used
are X and Q.

Examples:
A X 30 Multiplies A1 by 30
A Q 30 Divides A1 by 30

For these two operations, elements are regarded as 21-bit integers with
octal fractions. After multiplication, the answer is made a 21-bit in-
teger with an octel fraction; the result is taken modulo 2°° and the

octal fraction is rounded away from zero, After division the result is
an integer in digits 0-20, rounded towards zero, and is always exact if

an exact result should be obtained.
Examples:
204 X 204 = 6,2 Exact
2¢1 X 1,2 = 2.6 Result rounds away from zero

Joot X Joot = 0 2% — 0, modulo 2°°
Y1 X Y1 = 0.1 Result rounds away from zero

( 165 )

-l )

-

3

A

B - V- - - ==

R

-

5.7/3
17 Q@ 3= 5 Result rounds down
14 Q 3.4 = 4 Exact

The symbols 4y =, &, M, N, V, X, Q are termed "separators".

An expression consists of a string of elements and
separators, and
the elements are evaluated and compounded together from left to ﬁwmw&”

Elements and separators are allowed to be enclosed in round bra-
ckets, and sets of brackets within brackets are permitted. The contents
of dwmowmﬁmm beginning at the deepest level, are evaluated first and re-
@Hmowm by single elements before the general left to right evaluation is
carried out.

4 + mbm.t signs may also precede any element, including the first
of' an expression, or follow any separator other than themselves.

Y (1.65)



5.8/1

5.8 The Special Parameter *

When * is set by an equation such as * = expression, it is inter-

preted as a directive determining where succeeding items are to be placed
in the store.

For example

* =100

121 1 0
524 0 1 A2

o

L [} L] ‘e

arranges that the first instruction is placed in location 100, the next in
101, and so on until a further setting of * is made. If * is not set at
the head of an ABL program, * = 1: is assumed.

The right-hand side of the * directive must not contain any para-
meters which have not been previously sete.

Optional setting of ¥, that is *? = expression, is not allowed.

When * occurs in an expression on the right-hand side of a directive,
then * is equal to the address of the next available character position, ex-
cept when it is set to the address of the next full-word or half-word by the
directives F or H respectively. (Sce sections 5.10 and 5.11)

When * appears in any item other than a directive, it has the value
of the store address of the item.

The instruction 124 127 o % is & loop stop as * equals
the address where this instruction is held.

121 127 0 3  causes a jump round the next 2

instructions.

* moy be used in expressions as an ordinary parameter. Insertion
of extra instructions into a program is more liable to lead to errors if *
has been widely used. In the example above, inserting another instruction
to be jumped round would elso involve altering the jump imstructions to

121 127 0 4%

There are no applications in expressions for
the use of ordinary paramcters.

* thot connot be achieved by

( 1.65 )

=t

—

E

>

5,9/4

569 The Ba and Bm Parts of an Instruction

; An %Smdwcoﬁwos is regarded as an item, although the four parts of
an instruction have to be separated by multiple spaces or commas, and no
other items may occur on the same line.

. The Ba and Bm parts of an instruction have been written so far as
integers in the range 0-127, In fact they can be written as expressions
like the address parts Bits 14-20 only of the expression are extracted
and placed in the Ba or Bm position.

One use of this is in relativisation of B-register addresses. For
example, a routine might require the use of some B-registers without it
being known at the time of writing which would be most convenient. By
writing the B-addresses reloative to a parameter the range can be decided
later and the parameter then set.

Lxample:
R93
165 A7 147 0.7
165 247 147 J4
214 127 A7 A
101 3A7 147 0

If it is decided that B62 onwards can be used for this routine
then the directive A7/93 = 62 will set the B-registers referred to as A7,
147, 2A7,..0..4 to the values 62, 63, 64,4000

( 1.65 )



5.10/4

5.10 Half-Words, Six-Bit Werds and Chareptors :

e

The directive H introduces 24-bit numbers, These numbers are

written as expressions in exactly the same way as in the address parts of
an instruction.

. After H, successive expressions on one line are regarded as 24-bit
items and placed in the next available half-wordse The letter H, which needs
no terminator, need only appear before the first expression on each line,
Exemples:
H1 2 3 4
HA5/2 A6/2 8,6

A7/2 & K77

Any of the items can be labelled in the normal manner. If the item to be
labelled is one with the directive H, the label can occur before or after
the H.

Examples:
H 5)M

4)3.4

Other directives may ocour mixed with half-words.

Example ¢
H6 74

o

M= 8 9 A3=57

The directive H also increases ¥, if necessary, to the address of
a half-word.

The directive S introduces 6-bit words. Its action is almost

identical with that of H, except that only bits 15-20 of expressions are
used and these are assembled into successive character positions.

Example: .
51 22 3 1)4

On one line it is possible to write some half-words, and some six~
bit words, Thus

H )15 2064 Sé 15 Al H96 o7

is permitted, for example, each directive stating the interpretation to be
given to succeeding numbers up to a new directive or new-line.

The numbers would appear in three sucoessive words of the store as:-

000000 000000 000000 001000 000000 000000 000001 1441000

 J w— Sv—‘ |

H M5

( 1.65 )

B — .\

—-— aEm  ame

J=nl

T —

- — -

[ » & g k { = L d £ d k 7 = s ]

9 o - —

R

5.10/2

000000 000100 000010 000000 “ 000011 OOAAAAaNNxNHN”

i
L I 1 S i 2% T

H2064 S3 S15 SA1

000000 000000 001400 000000

T e ¢ J

o6 HO7

000000 000000 001400 oo;ooom

However, for clarity,,the mixing of numbers in this way is not to be en-
couraged.

Several directives are provided to read in characters from the in-
put medie and to store them in internal code ready for output, The string
of characters is introduced by one of the following C directives, All sub-
sequent characters after the directive, up to and including newline, are
ignored, and all the following characters in the next record except the
carriage control character are stored, The line is not reconstructed,
characters being stored as they are punched, apart from shift changes. This
means that redundant shifts (e.g. run-out on 5 and 7 track tape) are stored.

C The characters are stored in the next available character locationse
P 123 gives the number of characters stored plus Jé.

Ca As for C, except a is placed in the next character location after the
string, to be used as a carriage control character (where a is an
octal number less than 77; a point between the digits will be ignored)e.
P 123 gives the number of characters stored (including a)e

The first character may be labelled by writing a label before the C or Ca.

CT The next available halfword is set to the number of characters ﬁH&m
J4 and the characters are stored in the following character locations.

CTa As for CT except that a is placed in the next character location mwemw
the string, to be used as a carriage control character, and the first
half-word is set to the number of characters.

The half-word containing the character count may be labelled by
writing a label before the CT or CTa.

. An sdditional C added to the directives C and CT making CC and CCT
(orCTC) respectively, has the effect of ensuring that the string of charao-
ters ends in imner set, adding a ’shift to inner set’ character if necessary.
This extra character, if required, is included in the count of characters.
An additional ¢ added to the directives Ca and CTa will be ignored, The use
of the additionsl C is intended for continuation of the record with further
output which will start in inner set.

In every case, the character count is positioned from the least
significant end of the register.

( 1,65 )



ueé Q\u

CT is intended for a list of texts any of which can be output by
the instructions

101 2 1 0
1066 2 1 Y4
where B1 contains the address of the label m&ﬁmovm@ to the CT directive.
A description of the output procedures is given in Chapter 8,
For example
1)C
No solution

A2 = -0,1% A = (M - A2)U3 41

assembles the comment ‘No Solution’ as internal code characters, sets Al

equal to the address of the first character, A2 to that of the last and A4
to the number of characters.

(1465 )

|- T

-— = - el il

(o . . (-

=

1
L=t
Wy

5.,11/1

5,11 mwomewbmwm0H5¢ Numbers

48~bit floating-point numbers may be written in various ways. Each

number is assembled into the next full-word location. The ways in which
such numbers may be written are listed below.

The following notation is used:-

a 1s a signed decimal number, which may include a decimal point
with any number of digits before or after it.

b, ¢, d are decimal integers which may be preceded by a sign
(optional if +),

In the following cases the exact or nearest possible value is
assembled as a standardised floating-point number.

(i) a

Ixamples:
1
-16354,77625
+3.14159
~eD
1234
-27

(i1) a(b)

Lxamples:
#(6)
+3(-2)
~e5(=7)

(iii) a(:0)

The value of the number is a x AQU

The value of the number is a x 8°
Examples: |

A(:3)

~17(:=-2)
(iv) a(b:o) The value of the mmber is a x 10° x &°

After any of the four weys listed above :d may be written. Then,
after the standardised number has been formed it will have its exponent
forced equal to & with the mantissa shifted accordingly. Thus a:d, mAdv"@u

a(:0):d and a(b:c):d are the four ways of writing floating-point numbers
with forced exponents.

It is also possible to write any of a, b, ¢ or d as_octal numbers.

( 1.65 )



5.11/3

a cen be written as a string to any length of octal digits which
may include an octal point, and these must be preceded by + or -, and the
letter K.

eege 363,174
~K. 265
~K777777
4K0,. 4

b, ¢ or & canbe written as an octal integer preceded by Ke The K
may be preceded by a sign.

eege K14 ~K276
The character / can be used as an alternative to :.

Note: If the program contains a floating-point number that
is too large to be stored in Atlas standardised form the
program will be monitored during compilation and thef ault
indicated by the monitor printing EIPONENT OVERFLOW. If a
floating-point number is too small to be represented in
standardised form ABL will store f loating-point zero in
its place and continue compiling the program.

If the exponent of a floating-point number is forced
to a value that is too small to allow the number to be
represented in standardised form, the progranm is monitored
and A0 on fixing is printed to identify the fault. For
example, +1:0 requests that 1 be stored in floating-point
form with exponent zero, which cannot be done (-1:0 would
be acceptable).

Any floating-point number can be labelled, and more than one may
appear on a line. Floating-point numbers can also dm nixed with half-
words and six~-bit words on a linc, provided that the first of a group on a
line is preceded by the directive F.

This directive, which does not need a &oﬁﬂwso&owu introduces floa~
ting-point numbers. It has also the effect of increasing the value of *,
if necessary, to the address of a full-word, and it can be used, for example,
immediately before H to ensure that the next half-word is stored as the more-
significant half of a full-word.

Exanples
H24 F H25 36 12 F S4 H S61  FH27

would eppear in four consecutive words of the store as

e

000000 000000 000014 000000
. — 7 —_————

H 24

b

( 1.65 )

i el el el B2 Gml el Eeal el ol

s __ !- !

'y

’f»-_'_x‘

Lo ___ s

5.11/3

000000 000000 000011 001000 | 0001101001400

H25 56 12
000100 111101
LORS———
S4 S61
* ~,m000044_ 001 1144114 Q00000 000000 000000 000000 | 000000

F4l27

The practice of mixing the different types of number on one line is not

encouraged.,

( 1.65 )




5,12/1

5e12 Library Routines

A copy of the standard library routines is held on a system magnetio
gHVQO

To avoid confusion with programmer’s routines, library routines are
referred to by the letter L followed by a decimel number in the range
1 - 1999,

Parameters in library routines are referred to by elements of the form

As/Lo  label a of library routine c.

Some library routines may have more than one routine. In such cases,
the routine number is written before L.

As/vlc  label of a routine b of library routine o.

In some progrems, it is oecasionally convenient to have more than
one copy of a particular library routine., To allow references to any
particular copy, it is identified as Lo.ds copy d of Lo. Copies 1 - 1999
are permitted.

As/bLc.d  label a of routine b of library routine c, copy de

It is possible to refer to library routines in the address parts of
instructions or in expressions for half-words etc. without calling for them
explicitly by an L directive., If this is done, when the directive E or ER
is reached, any such library routines are found and read into the following
storage locations.

Tf it is desired to insert a library routine at a particular address,
this may be done by setting the address with a * directive, if necessary,
and then writing an L directive, for example:-

* = A2

read I10 into addresses from A2 onwards.
140

If 21l library routines mentioned earlier in the program are to be
inserted, then no number follows L, for example:-
L read all library routines previously mentioned into the current
address onwards.

In this case, the action is just the same as when an E or ER direo-
tive is encountered, except that the L directive may be placed anywhere in
the program after the library routines have been mentioned.

Private library routines may be incorporated into a program; this
is described in Section 12.7.

( 1.65 )

- n

| B
& .

]

L
L —

B.45/4

5.13 Directives

] %omd of the directives have been introduced in this chapter, 'This
section gives a complete list of the directives and describes those not so
far introduced.

m@cm&mos directives are used for setting the values of routine
parameters (1-3999 per routine), of *, of global parameters (0-3999), and
of preset parameters (0-99). They are of the form

Parameter = Lxpression
Optional parameter setting (except for ) is of the form
Parameter ? = DExpressiones

Any optional parameter settings to be made for a library routine should occur
before the L directive that calls that routine.

'Ignore’ directives

(1) vertical line | which does not need a terminator has the effect
that all subsequent characters up to the next new-line are ignored. This
allows comments and notes to be inserted into a program for the convenience
of anyone reading the program print-out. The characters 7 and £ are alter-
natives to |.

(ii) Square brackets [ ] which again do not need terminators
have the effect that anything contained within them is ignored; the sections
to be ignored may stretch over any number of lines and part lines. This
facility is intended for lengthy comments or the temporary ignoring of whole
sections of program, for example during the development stage of a program.

< and > are alternatives to [ ], but < and > can be used with

their meanings of "less than" and "greater than" within square brackets. If

< is encountered first then ﬁwmsa.u can be freely used within the comments

Both ﬁ.u and ¢ » can be "nested¥ When H”Hm encountered what fol-
lows is scanned with only mvbm.u being recognised., A count starts at 1 on
the first ﬁ~ is increased by 1 for each further ﬁmﬁm. reduced by 1 for each U.
The comment is considered to have terminated only when this count becomes
zero, < and > are treated in exactly the same waye.

(iii) Query ? followed by an cxpression and a terminator, has the
effect of ignoring the rest of the line or not, depending on the value of
the expression. If this is zero, the remainder of the line is ignored as
with ~m otherwise, there is no effecte The expression must already have
been assigned a value,

Exanpless

[2 > 1]
[a >[p -~ c]>d]

<1 +mD +b @ +C leeee >

( 1,65 )



5.15/2

50 [
XXXs 0o

eeexx | ]

This last causes the following lines up to
The | before | ensures that the | is never ummatched,

Note: _ T & ﬁA and ? are directives and not terminators. They must not
occur other than after correctly terminated itemse.
C and CT directives

The directives C and CT on one line introduce 6-bit characters on
the followimg line. (see section 5.10)

E directives

The enter directive, E followed by an expression. The expression
gives the address at which the program is to be started when it comes to be
executed, - The directive has the following effects:-

a) It terminates the current routine,
dw A1l parameters and expressions which have been used are evalu~
- ated and inserted into the program.

(¢) Library routines are found and inserted at the required places
or at the end of the program, depending on whether they were
called for by L directives or simply referred to.

Library routines that have been referred to in the program

(but not explicitly called by L-directives) will be inserted

in store locations immediately after the last item before the

E directive. Note that if * directives have been used this

is not necessarily the highest address used by the program,

and care is required to ensure that library routines do not
overwrite any part of the program, The library routines may

be stored in, for example, locations A3 + 9 onwards by preceding
the E directive by * = A3 + 9

(d) Fault indications are printed out for parameters which are
used but not set, and for any other faults encountered. If
there are any faults, the program is normally suspended and not
entered. (see section 12.6 for exceptions to this.)

(e) The compiler, which has occupied store locations above m x 22°
(that is, J3) is deleted from the store so that storage location
nurbers up to % x 2°° (that is, J34) may now be used. (Note:
the Supervisor uses store locations from J34 upwards ).

There are also two other enter directives which may be used. These are:-

(a) ER followed by an expression. The effect of iR is the same as
E except for part (e)s That is, the compiler end parameter
lists are retained in the store. The program can then only

- use storage locations up to J3.

(v) EX followed by an expression. This is the enter interlude
directive. All parameters which have been set and all expre-
ssions which ean be evaluated are inserted into the program.
The program is then entered at the specified location irres—
pective of unset parameters, and without the insertion of

( 1.65 )

to be ignored
if P50 is non-zero, but to be taken account of P50 is zexro.

~

7
]

W LD aE e e

-

- e ..

[
¢

(0 U

- . — - - - —

54548

library routines other than those called for by an L directive.
The EX directive does not terminate a routine.

B1 to B88 are cleared before a program is entered by E, ER or EX,
B89, however, contains the current value of ¥, After an E directive B90
contains J3; after ¥R and EX BO0 is clear.

Any enter directive may be labelled, and the specified parameter,
which is taken to belong to the routine terminated by the enter directive,
is set to the current value of ®. In the case of E and ER this setting is
made after any necessary library routines have been inserted, so the label
always refers to the address of the first available character location after
the program,

F directive

F introduces a group of floating-point numbers (on the same line)
and can also be used to increase the value of ¥, if necessary, to a full-

:word address.

H directive

H introduces half-word numbers (interpreted as 21-bit integers plus
a single digit octal fraction) and also has the effect of increasing the
value of ¥, where necessary, to a half-word address.

L, Library directives

Lc.d, where ¢ and d are decimal numbers in the range AlAwmwm oalls
for copy d of library routine ¢ to be inserted at the program location in-
dicateda

L, when followed by a terminator but no number, calls for a ocopy of
all library routines mentioned earlier in the program,tc be inrerted at the
program location indicated.

Re. Routine directives

Rn, where n is a decimal integer in the range 1-3999, defines the
start of a new routine,

S directive

The directive S precedes a group of 6-bit integers which will be
stored in successive character positions.

T, Title directive %

After reading T followed by new-line, the next line of characters
is copied to the program output channel O. The title directive can also be
written as Ta or Ta-b where a and b are decimal integers. In the first
case the next line will be copied to the program output channel a, in the
second to channels a to b inclusive.

If desired the T, Ta or Ta~b may be terminated by comma or nultiple
space: the remainder of that line will then be ignored and again the next
line will be treated as the title and copied to the output.

( 1.65



