10.12/1

10412 Input and Output using Private Magnetic Tapes

A1l the documents fed to peripherals for input are stored by the
computer on a magnetic tape known as the system input tape. They are then
brought into the core store as required. If a program has a large amount of
input it may be in the programmer’s interest, and in the interest of the
efficiency of the computer, to transfer this input to a private tape before
starting his program, instead of using the system input tape.

Output is normally accumulated on the system output tape before
being sent to the required peripherals. If a program involves extensive
output this may be written to a private magnetic tape instead, and later
output upon requesting the Supervisor to do so by means of a special doocu-
ment fed in through one of the peripherals after the job is complete.

Both these facilities are dealt with in this section,

10.12,1 Extensive Input

A document can be copied to a NEW magnetic tape by putting above
the document heading the directive:=-

COPY TAPE NEW
*tape number = tape title

The title specified will be written in seotion O of the new tape
and the document following will be copied into section 1 onwards.

If it is required to store the document on a previously used tape
(i.e. one which already has a title) the necessary heading is:-
COPY TAPE b
*tape number tape title

Here b is the number of the tape block at which it is intended to
begin copying the inpute.

When the copying process is complete the following information will
be printed by the computer:-
*tape serial number/section/word
title dooument.
The section and word indicate where the document is stored.

Example:

To copy the first data document of the job given in 10,5 to
the NEW tape F1111 it would be fed to the peripheral in the formi-

COPY TAPE NEW
*F1111 DATA FOR F64, METALS
DATA

F64/A, IRON CONTENT

(data)

- en Ew em o ph ms en s e e

b 7,

(1.65)

10.12/2

The information output by the computer would be:-

*M141/1/0
F64/A, TIRON CONTENT

The second data dooument could be sent to section 7 onward
of the same tape thus:=

COPY TAPE 7

*F1111 DATA FOR F64, METALS
DATA

F64/B, COPPER CONTENT
(data)

am am ws em e ew e e e >
o5 e ot

E:3 A.«,'N

This could produce the output:~

*F1111/7/0
F64/B, COPPER CONTENT

10122 Job Description References

In order to use documents copied to private tape, the tape must
appear in the tape section of the job description in the usual way. In the
INPUT seotion of the job description the sub-heading:=-

i TAPE a/b/o

must appear before the title of the document., Here i is the input stream
number, a is the programmer’s number for the tape, b the block number, and
¢ the word number within block b at which the document startse. Thus the
Job description to run the program of 10.5 could begin:

JOB
F64, STATISTICAL ANALYSIS OF METALS
INPUT

0 F64, ANALYSIS PROGRAM

1 TAPE 27/1/0

F64/A, IRON CONTENT

2 TAPE 27/7/0

F64/B, COPPER CONTENT

OUTPUT

0 LINE PRINTER

1 FIVE HOLE PUNCH 3 BLOCKS

TAPE

27 *F1111 DATA FOR F64, METALS

10123 Re-use of Documents on System Tapes

As already explained, under normal circumstances documents are
stored on system tapes before use., Among the information on output O will
be the location of each document on tapes This will take the form:-

mﬂ\d\o

($.65)

10412/3

where Sa is the system tape number, and b,c are the block and word numbers
of the first word of the document., Such tapes will be stored for a f ixed
period of time and if a document is required again within this time i4 may
be called for direct from system tape, avoiding the use of a slow peripheral.
This is done by including in the INPUT section

i TAPE Sa/b/c
Title of document

. .

where i is the programmer’s number for the document.

For example, if a program called 'F74 FACTORISATION' has been run
and is stored at S7/2/411 it can be re-run with a data document called
'F74 LIST 3A’ by a job description as follows:=

JOB

P74 FACTORISATION RUN 2
INPUT

0 TAPE S7/2/411

F74 FACTORISATION

1 F74 LIST 3A

OoUTPUT

1 LINE PRINTER

*&»*N

Only the job description and the data document would then need to
be fed to peripherals. Note that no further reference to the system tape
is required.

10,12, 44 Extensive Output

Large quantities of output may be written to a NEW magnetic tape
by specifiying in the OUTPUT section:-

OUTPUT
i TAPE a/b/c
type of equipment m BLOCKS

Here, i is the output stream number, a the progranmer’s number for the tape,
b the block number, and ¢ the word number where the copying is to start.
The last line is as in section 10.4.2.

Thus if output 1 of the job in section 10.5 were 300 blocks instead
of 3 the OUTPUT section could be written:-

OUTPUT
0 LINE PRINTER
1 TAPE 27/1/0
SEVEN HOLE PUNCH 300 BLOCKS

The tape must be specified in the usual way in the tape section of the job
description:~

TAPE NEW
27 *F4111 F64, OUTPUT METALS

This will cause the NEW tape 1111 to be given the title ‘F64, OUTPUT METALS'
and the output to be sent to this tape beginning at block 1.

(1465)

B = = = O W=

—

— \{\)

- —— j— =2 e

—_— e

Vi

€

- e -

——

O TR IR CUN TN CHEN T

p—

10.,12/4

If it is required to store the output on a previously used tape,
the necessary entry in the OUTPUT section is the same, but the tape must
be specified under the heading TAPE in the tape section.

The private tape can be printed by a steering tape consisting ofi=-

PRINT TAPE
tape serial number/tape title

if the whole tape is to be printed
or
PRINT TAPE b/c

o

“tape serial scsdmw\wm%m title

if one document is to be printed, from block b word ¢ onwardss

(1465)

1041 3/1

10,13 Job Description Parameter

In a job where different parts of a standard i
. program are required
to process @P%%mwmﬁ& types of data, it may be more convenient if &wm.nm&m
%me is psmwom&m@&ps.wwm job description rather than in the data or program,
e parameter section in the job description provid i i
Sanmauster oot P provides for this, and is
PARAMETER

ots

* ¢numbers

The number consists of up to eigh igi i justifi

) T ght octal digits, and is left justified.

Mwwwwwemw and t he number may be on the same line, separateda oy one oxr more
Se

Examples:

PARAMETER *00061247

ﬁgwbzmemw
“1060 w alternative
forms

PARAMETER ™*1060000)

.EWQS.dww memBdeH section appears with other sections, the order
of sections is immaterial; if omitted, the parameter is taken to be zero.

The value of the parameter may be read b . .
struction Y ead by program using the in-
1140 4 0 S

which will set the half-word s’ = parameter number (see seotion 12.9).

(1.65)

- - - - O e E s = =

—

1.1/4

mwm%&mﬁ 14

MONITORING AND FAULT DETECTION

11,1 Supervisor Monitoring:

e

With the aid of special hardware, the Supervisor keeps & record of
the progress of a program during its run. This supervisor monitoring notes
amongst other things the store in use, the computing time teken, and the
occurrence of errors which may prevent the successful execution of the pro-

graims

In Atlas, provisionr is made for the automatic detection of a
variety of clearly defined fault conditions, which may be due either to
nistakes in the program itself, or to errors occurring in the computer or
the peripheral equipment. The faults result in entry to a part of the
Supervisor known as the "monitor’ program, with the particular fault res-
ponsible being distinguished by a mark or count set in BH.

The monitor program consists of a set of routines, some in the fixed
store and some in the main store, whose primary purpose is to print out such
information as will enable the cause of the fault to be diagnosed. In the
case of certain types of program fault, it may be possible for the programmer
to decide beforehand what action should be taken o enable the program to be
resumed; he will then provide a mumber of fault routines and list them in the
trapping vector. The monitor program will enter the trep indicated in B9,
if such indication does in fact correspond with an entry in the trepping
vector; otherwise it will proceed to diagnostic printing, or will transfer
control to a private monitor routine if so requested. This private monitor
program may provide a special form of diagnostic printing - either instead
of or in addition to the standard - and may, once and once only, cause the
program to be resumed, Any subsequent monitoring will always be followed

by the End Program sequence, except when the feult is trapped.

When entry to the private monitor follows expiry of the total time
allotted to the program, a further 4 seconds of computing time is allowed
for the completion of the private monitor routine, Similarly, if execution

time is exceeded, a further minute of exeoution time is allowed, and if Owt-
put is exceeded, a further block is alloweds

11.141 mwwmm.ow Program Faults

We shall here concern outselves solely with program faults: there
is little that the ordinary programmer can do about machine faults, other
than to minimize their effect by providing adequate re~entry points and an
informative private monitor routine.

There are three distinguishable categories of fault detection
causing entry to the monitor program:=-

(a)* Interrupt Faults! Some faults are detected by special equipment pro-
vided for the purpose: these include exponent overflow, division overflow,

(1.65)

(165) | (1.65)

1451/2 1141/3
: MARK OR TRAP
| ill DETECTED ~ COUNT NUMBER
use of an unassigned function code, and ‘sacred violation (i.e. reference to a FAULT MONITOR PRINTING BY IN Bo (IF ANY)
part of the store reserved by the Supervisor)., An interrupt occurs and will
set in B9l a digit corresponding to each such fault., Further analysis of the m - Variable length V TAPE ERROR R 5.4 14
fault is provided by a supervisor extracode routine (S.E.R.), the same rou- record error :
.a.sr,.bo being used for m.w_.u. faults, i Magnetic Tape TAPE T s 6.0 19
(v) *Supervisor Faultse % further :M_u.“_.mmm of faults are detected by S.E.R.’s, ¥ | W failures = ’
being especially concerned with faulty use of the store and of peripheral ; - Y.
equipments, and with the over-running of time allowances. These faults lead =3 - i g e S _m.». i
to the setting of an appropriate digit of B91, just as if they had been de- .m Unassigned Function ILLEGAL FUNCTION I Bit 4
tected by hardware, as in Am.v above; they include over-running of computing Saerat Wit
time or of tape waiting time, and attempts to exceed the requested store =8 ﬂ H:mﬁucwdww rie SV INSTRUCTION I Bit 8
allocation. In the object program, extracode instructions dealing with the ‘ a4 ;
store and peripherals will enter a S.E.R. to detect faulty usage. Only one , Sacred Violation SV OPERAND I Bit 10
such fault can be detected at once, but it will be recorded as a count in ﬂ Operand
B91 without interfering with any existing record of faults -of the interrupt .w I1llezal block ,
types The same S.E.R. monitor sequence is entered as in (a) above. Mcswmn. ILLEGAL BLOCK S 9.6
(e) .ma.waeo@m Faultse Many faults are detected by the ordinary extracode 1 — _ :
routines themselves; typical of these are errors in the arguments of functionse h m Band wot reserved EAND' NOR RESERVED 2 163
Only one such fault can be detected at once; the extracode will set a counter . Computing time i :
in B91 and then jump directly to the common Se.E.R. monitor sequence men= m ﬂ expired C TRME EXCERDED g e o
it it o O E TIME EXCEEDED S Bit 3
The various faults which result in entry to the monitor program are l — expired .
B in the Jable belowss | Input not defined INPUT NOT DEFINED S 11,6
FAULT TABLE Output not defined OUTPUT NOT DEFINED S 12.2
o AL Output ded OUTPUT EXCEEDED S 12,6
DETECTED COUNT NUMBER - W utput exceede 4 .
FAULT MONITOR PRINTING BY IN B9 (IF ANY) . ﬁ Tape not defined TAPE NOT DEFINED S 13.2
Locel time expired L TIME EXCEEDED S Bit 5 0 | Tllegal search TLLEGAL SEARCH S 13,6
Division Overflow DIV OVERFLOW I Bit 6 1 il No seleoted tepe NO TAPE SELECTED S 14,2
2 s | No mode defined or
Exponent Overflow EXP OVERFLOW I Bit 14 2 | attenpt to write WRONG TAPE 1ODE S 14.6
Page locked down PAGE LOCKED DOWN S Bit 1 3 - ﬁ wher: not permitted
Number of blocks - : Number of decks EXCE 1CH .
e EXCESS BLOCKS S 2.0 4 . - mm ﬁL cxooeded - EXCESS DECKS S 15.2
mec.mH.M Moo&omﬁmﬂl SQRT ~VE ARG E 2.4 5 .A No trap set TRAP UNSET S 15.6
Logarithm argument - m ﬁ exceeded *
& oo LOG -VE ARG E 3.0 6 1
= 1 (I = Interrupt; E = Extracode; S = S.E.R.)
SPARE 7 : | _ Some of these faults are associated with information in the job
Tnverse trig. INVERSE TRIC OUT . o . @ 7 @mvmoﬂpwdu.oﬁv and are listed below,
function OF RANGE * : ¥ Excess Blocks
memngm mﬁwow TNPUT ENDED S 4.4 9 : ﬁ Computing Time exceeded
pu e 1 J Execution Time exceeded
End oﬁmmwmnmﬁpo D TAPE g 5.0 10 r Input not defined
Q _V H Output not defined
Output exceeded
ﬁ ;
,
7
|

11.1/4

Tape not defined
Excess Decks

Division overflow occurs with certain division instructions, marked
DO, when the divisor is zero or substandard,

Exponent overflow occurs with certain instructions, marked E, when,
after completing all functions of the instruction, including rounding and
standardisation, the accumulator exponent is greater than #127, The guard
and sign bits of 1124 will be O and 1 respectively. If exponent overflow
is trapped, the fault indication will not be reset and may cause further
monitoring with a subsequent accumulator operation. This may be avoided by
first clearing B124, setting guard and sign bits to zero. If the mbochHm¢mH
exponent becomes less than -128 during multiplication, division or m&mbamwﬁwl
sation, then the guard and sign bits of b124 are 1 and O respectively. This
is exponent underflow, The accumulator is set to floating point zero, but no
fault is indicated.

The arguments for square root, logarithmic and inverse trigonometric
functions are all tested to determine whether they are within range. They
may cause exponent overflow if very large arguments are used.

'Programs that employ line reconstruction, such as the ABL compiler
and 1100, will attempt to read after the input stream is finished if the end
of document marker ***7 etc., occurs on the same line as the last information
for the program.

Sacred Violation Instruction refers to a transfer of control to
address J5 or above, If control is transferred to the fixed store, @mdﬁ@mﬂ
J4 and J5, there is no immediate interrupt, but the result is unpredictable.

Sacred Violation Operand always means an attempt to read or write
to the private store (i.e. to J5 or above).

Illegal block number indicates a reference to the Supervisor working
store, between J34 and J4.

Certain functions are detected as being illegal. The instruction

1000 0 0 0

which is the same as floating point zero, causes entry to extracode control
to attempt to obey the instruction

001 0 0 0

or the floating point number m? This function is recognised as being un-

assigned.

End of magnetic tape refers to an attempt to obey a transfer in-
struction involving section O, or to use tape beyond the last addressed
section (section 4999 on a fully addressed 3600 ft. tape).

Illegal search refers to an attempt to search a magnetic tape for
section O or beyond the last addressed seotion.

(fes’y

-

-

. .

Wy - . e . e e

- f—

— —

- .

 !53! lli-

N\

N - s - = -

p—

e

e

¥

=

199 /5

No magnetic tape selected indicates that none of the ’select tape’
extracodes has been obeyed.

. Variable length record error implies an attempt to transfer when not
aligned on a tape marker, or an encounter with an incorrectly made marker.

Should a magnetic tape failure occur, the program may not be moni-
tored immediately, and in this case an attempt will be made, by the Supervisor,
to produce a correct transfer. After a set number of failures, usually seven,
full monitoring will then occur. An attempt to read from a seotion that has
not previously been written to will be recognised as a tape failure, and hence
it is advisable to write to all sections required when a new tape is used. A
decimal number may follow the TAPE FATL text, and this is interpreted as

81924 &+ 512B 4+ C
where C is the tape number on which the failure occurred
B is the fault number
and A is the fault type, 0 if E-type, 1 if F-type.

These fault types are described in the Atlas 1 Computer System Operators’
Manual.

A monitor for 'Trap Unset’ indicates an attempt to enter a trap using
extracode 1134 when no tape has been set by extracode 1132 (see section 11.2).

An attempt to exceed the number of active branches specified by ex-
tracode 1103 will be monitored (see Chapter 12).

'Page Locked Down’ and ‘Band Not Defined’ monitoring may occur when

a program is controlling transfers between the drum and core store (see
Chapter 12).

11.1.2 Standard Post Mortem

Following the detection of one or more of the faults listed above,
the appropriate text will normally be printed on Output O, followed by a
standard form of post mortem printing, similar to that shown below,

BAND NOT RESERVED

INSTR 73 121,127,0 , 549 Bl27 = 0
INSTR 74 TGO e i © Bl2 = 4.6
INSTR 75 101,13 ,12 , 108.4 B13 = ~1048574.6 B12 = 4,6
Bl =699050,6 B2 =~1031932 B3 = 42798,7 B4 =~42799
B5 =0.1 B6 =258553 B10 =18 B12 = 4.6
B13 =1048574.,6 B70 = 0.6 B8O = 0.1 B9Y0 = 36
BOl = 10,3 B92 = 0.1 B93 = 0.1 BY4 = 7.1
BO5 = 2631 BO6 =043 BY7 = 917504, 4

TAPE 1 AT 64

TAPE 2 AT 72/306

TAPE 3 AT A

Normally the current address in main control, B127, is printed, fol-
lowed by its full word contents in instruction form, and the contents of any

(1.865)

11.1/6

B-lines in the range B1 to B99 referred to, unless zero. Irrespective of their
true value, the contents of any B-lines in the range B100-B127 referred to will
be printed as zero. The two previous words are similarly printeds If one of
the locations is in the private store or is undefined, then

INSTR UNALLOCATED

will be printed instead of the normal form. Following an EXCESS BLOCKS fault,
b127 will be reduced by 1 before printing instructionss The instructions
printed may not be the last three obeyed, as a jump may have occurred to either
the second or third instruction printed, as must have happened in the example.
Also, because of thc overlap in executing instructions with each other, and
with other operations such as tape transfers, the printing may occasionally
bear little relation to the instruction originally causing the fault, although
many extracodes causing faults will appear as the second instruction; basio
functions causing faults may appear as any one of the thrce instructions, or
not at all,

After the three instructions, the contents of all B-lines B1-B99 are
printed, unless zero,

If one inch magnetic tapes are being used, their current positions
are then printed out, indicating the next section number, and, for variable
length working, the word number also.

Except for the function codes, which have their usual form, and
octal fractions in addresses and B-lines, all numbers are decimal,

11e1e3 Ending a Program

If no fault is found during the execution of a program, then the run
will be finished by obeying the 1117 extracode, If a fault is found, then,
after post mortem printing, the Supervisor will normally end the run as if the
41417 instruction had been obeyed.

1447 Print monitoring information on output O, End all program output
streams, indicating the amount of output in each streams, Instruct
the operators to disengage and rewind all magnetic tapes used.
Remove the job from the store; clear Supervisor directories relating
to this jobs.

The form of the monitoring information on output 0 is given belows

<Job Titley

INSTRUCIION 8 7

STORE 32 / 4

2 DECKS 6 TAPE BLOCKS 1 HALT TIIE
INPUT O -1 BLOCKS

OUIPUT O (3) ANY 40 RECORDS

The meaning of +this information is explained below.
INSTRUCTION 8 7
8 instruction interrupts were obeyed in all, of which 7 were used

in compiling., An instruction interrupt occurs every 2048 instructions, basic
multiplication and division orders being counted as 2 and 4 instructions res-

(1.65)

" i s 1 [— "

- L e e el el el =

OB OB B W W W

=

- S - - riilr - - ii- ler lll- - .. -th

— - - - —

— .- FR— @

14.1/7

pectively. At some installations a third number on this line gives the number
of program blocks transferred between drum and core store.

STORE 32 / 4

The job desoription requested 32 blocks of store, of which 4 blocks

were in use when the program was terminated, including one block for each
input or output stream,

2 DECKS 6 TAPE BLOCKS 1 HALT TTME
Two magnetic tape decks were reserved, and six blocks were trans—
ferred between tape and main stores The program was suspended by the Super-

visor for one second awaiting the completion of tape transfers.
INPUT O 1 BLOCKS

. One block was needed in the input well to hold the information on
input stream O. There will be similar printing for all other input streams
defined.

OUTPUT O Auv ANY 40 RECORDS

The job description requested that output stream O should be to
ANY @%ﬁm of peripheral. Forty records were output before the program was
terminated. If the actual peripheral is a paper tape punch, the output will
@m measured in blocks; otherwise, in records. The output stream was broken
into three parts; this printing is suppressed if the stream was not broken.
There will be similar printing for all other output streams defined.

The amount of output, indicated at the end of each stream, is always
measured in blocks, in the form

END OUTPUT 1 BLOCKS

(1.65)

1142/1

11,2 The Trepping Vector

Upon entry following a fault, the first action token by the monitor
program is a check to see if the fault has been trapped by the programmer;
if so, the monitor sequence will at once exit to the trap set.

The trapping veotor occupies several successive words of the store,
and the address of the first word must be specified as S in the extracode 1132.
Bach word holds the trapping information for a particular fault, word n being
associated with fault type n; the more-significant half-word contains the
address of the fault routine to which the trap will transfer control, and the
less-significant half-word contains, in bits 15-21, the address of a B regis-
ter which is used to hold the value of main control when the fault was detected.
This may be but is not necessarily the point in the main program at which the
fault occurred.

Only some of the faults listed in the table in section 11.1.1 have
trap numbers: these are the faults which the programmer might reasonably be
expected to deal with before resuming the program; certain traps may be use-
ful as a means of avoiding extre testing in the program. There are faults which
are not trappable; thesc include such faults as sacred violation, which the pro-

grammer can be expected to avoid, and deviations from the job description, in
exceeding the specificd time allowance, for instance.

No trapping will occur unless the program first obeys an 1132 in-
struction, specifying the address of a trap vector. Subsequently, trepping
can be suspended by specifying a negative address in extracode 1132. In order
to trap some faults but not others, the programmer should specify a negative
jump address in each unwanted trape. Normally the trap vector will be punched
as part of the program, and the unwented entries may be punched as 40 or nerely
omitted, since floating-point zero produces a negative first half-word, because
its exponent is -128.

Two other extracodes associated with the trapping vector are given
below, :

1133 Place the first address of the trapping vector, if any, in Baj if
no trap has been set, make ba negative, This cnables a subroutine to
preserve the current trap when a private trapping vector is required.

1134 Obey the entry number Ba in the trapping vector, as though a fault
of type Ba had occurrcd. Ba may range from O to 63 inclusive, and
may be used to enter standard traps, or as a subroutine entry at
addresses listed in the trapping vector for ‘fault’ numbers 14
onwardse

(1.65)

]
LEN

- - e e e R e e

=l

==

- e e s Em s e mmom

-

== =N

- e .

11.3/1

1.3 Private Monitoring

When the monitor program encounters a fault which is not trapped,
it prepares to terminate the program and proceed to diagnostic printing, as
@mmmdwdm@ earlier, If he so desires, the programmer may supply a private
monitor seguence, whose starting address must be specified by using extra-

code 1112, The last octal digit of the starting address determines the time
of entry to the private monitor as follows:-
Octal Fraction _ Entry
1 Before printing the one line explanatory
text
0 After printing the text
2 Af'ter the standard post mortem printing

When the entry is before any printing, B9 contains the record of
faults, and B92 the value of main control when the fault was detected, with

MWm contents of B93 and B121 altcrede Otherwise B96 and BS7 will also be
tered.

In the event of faults in the private monitor sequence itself, it is
necessary to avoid the possibility of endless loops of errors; this is accom~
plished by forbidding a second entry to the private monitors Any subsequent
faults may be trapped, but if they are not trapped the standard monitor will
end the program,

. Specifying a negative address with extracode 1112 cancels any
private monitor routine,

(165)

11.4/1

114 Restarting and Re-~entering a program

Following a failure in the computer or an on~line peripheral, jobs
completely in the machine will not be lost, although documents of incomplete
Jobs, and documents only partially read must be input again. Programs par-
tially executed will normally be restarted from the beginning; there are no
facilities at present by which the Supervisor will dump program information to
allow re-entry to a point other than the start of a programe

11.4,1 Preventing a Restart

It may be useful to prevent a job using the ‘break output’ facility
from being restarted once a point is reached where the job is substantially
complete; alternatively a restart may be impracticable for a job using
magnetic tape., To this end, the instruction

1113 0 0 -1
will prevent the job being restarted if a breakdown occurs following the use
of the extracode, but before completion of execution.

11.4,2 Re-entering a Program

Af'ter a breakdown, for a program to be re-entered at some point other
than its start, it is normally necessary to dump information as the job pro=-
ceeds, specifying a re-entry point with each dump. Although the Supervisor
does not yet provide such facilities, the programmer may provide his own dump
routine. :

Such a routine, called Dumpling, is described in the I.C.T. Atlas
Computing Service Bulletin No. 7. Dumpling occupies one main store block,
dumping, on to magnetic tape, the information listed below:-

All defined store blocks, including Dumpling.

The tape numbers and positions of all one inch magnetic tapes working
in fixed length mode,

The accumulator (double length)

The logical accupulator

B-lines 1 to 90, and B121

The number of the currently selected input stream.

The number of the currently selected output stream.

V-store line 6 containing A0, Bt, Bc, etc,

The address of the trapping vector, if any.

Details of the dump region.

The dump number,

The re-entry point to the program in the event of a breakdown,

As each dump is made, its location is printed on output stream O.

After a breakdown, a very short steering program allows the infor-
mation stored at the last or the penultimate dump to be recovered, and the
program continues from the corresponding re-entry point,

(1.65)

=P N oW D u

L

= s = m

1145

1112

1113

1117

1132

1133

1134

1145/1

Monitor Extracodes

The Boupdoﬁ extracodes introduced earlier are listed again here.

mm&.ﬁtm address of the private monitor routine to S, If the standard
monitor program is subsequently entered, following a fault which is
not wwmw@m@u control will be transferred to the private monitor
womdeH% after some diagnostic printings. The amount of mHmmsommwo
printing is determined by the octal fraction of S, as follows:

Octal fraction Printe~out

0 One line describing the fault,
1 No standard printing,

2 One line describing the fault, followed
by standard post mortem print-out.

To subsequently suspend private monitoring, a negative address, S

must be used with 1425 .

0 0 -1 Do not restart.

Hw m.dwmmw@osﬁ ocours after obeying this instruction but before the
Job is completed, it will not be restarted.

End program
Print monitoring information on output 0; end all output streams.

Instruct the operators to disengage and rewind any magnetic tapes
used., Clear all Supervisor references to this Jjob,

mow the address of the trapping vector to S.
This extracode must be obeyed before any trapping van take place; to

subsequently suspend trapping, 1152 must be used agai B oL
with S negative. s sed again, but this time

Find address of trapping vector,

Set dmw to the first address of the trapping vector if one is defined
otherwise set ba’ negative, !

Enter trap Ba, Aomwmmmuv

Obey entry number Ba in the $rapping vector, as though
type Ba had occurred. = s &s though a fault of

(1465)

11.6/1

116 Faults Detected by the Compiler

Apart from faults detected during the excoution of the program,
many types of error may be found earlier by the ABL compiler, An indication
of the type and location of each fault is printed out on the current output

stream, usually output O, and, if necessary, arbitrary values are assigned
to expressions to allow compiling to continue

There are some special preset parameters which determine the exact
action taken by the compiler after a fault has been found. These parameters

are described in Chapter 12; the compiler action described in this section

assumes no program setting of these parameters. In particular, P110 will
normally be zero,

11,667 B-lines in ABL

It may be useful to know whether o run has ended during ocompiling
or execution. When ABL is in operation, B3 is in the range =127 to 0 in-

clusive. The most likely value is =127, unless the run has been terminated
by INPUT ENDED.

ABL uses most of the B-lines. It preserves its own B-lines when it
meets an enter directive, and then clears B1 - B88 before obeying the :
directive. B89 will contain the current value of *. After an E-directive,
B90 contains J&; after ER or EX, B90 is clears

11.6,2 Indeterminate Items

When ABL needs to evaluate an expression, and can not do so, the
expression is faultcd as described below, and an arbitrary value assigned.
The value depends on the context.

(1) ¥ = expression, When this is faulted, * is given the value
CoZ3TTPTI0 or 654321,1P110. This allows ABL to try to cheok the

rest of the program, although it may not be able to enter it.

(ii) 1In 211 other cases the expression is given the value J36., If the
expression is in an Enter directive, it will cause a monitor on
ILLEGAL BLOCK, since J36 is an address in the Supervisor Working
Stores A similar monitor is likely if the expression occurs in an
instruction which is subsequently obeyed.

When any other faulty item is found, nothing is compiled, As the
store is initially cleared to floating point zero, all or part of this bit
pattern will remain in the location reserved for the faulty item,

11.6.3 Diagnostic Printing

The first ABL diagnostic printing for a program is preceded by the
line of printing,

ABL MONITORING

Each fault causes printing, on a new line, of the location of the
fault within the progrom, together with an explanatory text. The following

line will usually be a reconstruction of the line of program containing the
fault .

(1.65)

— - .-

o

& | (| [[| -

[==cuemmman

. e W - - N - -

11.6/2

If the error density is higher than 8 faults in 24 lines of print-
out, then

TOO MANY ERRORS
is printed, and the run ended (see also P101)s Blank lines, and lines
containing only erases, are ignored.

Normally, when a fault is found, compiling continues until an E or
ER type of enter directive is encountered, so that any further faults may be
detecteds When the enter directive is reached after one or more faults,

IERRORS DO NOT ENTER
is printed, and thc eun ended (see also P102).

1 1664 Fault Location

Each ABL monitor printing begins with a mwmowwwomwwos of savamA
in the program the offending item occurs. ‘Where’ means ‘in what line of
the printed program and in what part of that line”, ABL Hmwwwm to lines
of print in exactly the same way as a programmer does by counting from ebw
last label set, but with the exception that A0 is not used to mean dﬁm H+Sm
on which the first instruction or item of a routine appears but the line in
which the R itself appears. Thus the very first line of print in a program
is 1 A0/0, Blank lines, and lines containing only erases, are ignored

When ABL prints 3,4 A1/20 it means that it has read 3 terminators
in line 4 after A1 of routine 20 when it has found an error. Thus, for
example, if an expression is incomplete (e+gs, no close bracket after an
open bracket), then the next terminator will have been encountered wm%oam
ABL can realise that there is an error, and the 'position along @5@ line
will be printed accordingly; but, if a bogus character Hm“mocwm in an
expression, then this will be recognized before the next terminator is
encountered.

(1.65)

11.6/8

11.6,5 Diagnostic Printing Character Set

In all diagnostic printing, ABL uses its own oharacter set. The
following is a list of all available external characters (7-track tape,
5-track tape, and cards) and their corresponding ABL characters., All the
ABL characters are contained in the 7-track tape and Anelex line-printer
character sets, so that ABL diagnostic printing may always be conmpletely
printed or punched on these media.

External: 0123456789

ABL : 0123456789

External: ABCDEFGHIJXKLMNOPQRSTUVWIXYZ
ABL : ABCDEFGH4JKLMNOPQRSTUVWIXYZ
External: abcdefghijklmnopgrstuvwxysz
ABL : ABCDEFGCHT1IJKXMNOPQRSTUVWXYZ
External: W\?mc+:u” AvﬂlsM,ouﬁb—
ABL s R\GA%;._.I < >=oq 3 ...VOA_E
External: 01 BE L wazr > xfn

ABL : * o odex| Ok KX i ©X O O% !

All other single characters are replaced byce A1l composite
characters not including Erase are replaced by B All composite characters
including Erase are ignored. All single spaces are ignored. Two consecu-
tive spaces are replaced by Comma. After a Terminator all spaces are ignoredy
but not commas (see fault below).

1 (lower case L) is an illegal character, unlike the rest of the
lower case alphabet; i and o are treated as one and zero respectively, as
are capital I and C.

11,646 Explanatory Texts

The ABL texts are listed below, with further explanation where
necessarye

INSTRUCTION?)) .)
ABRL thinks that a line contains an instruction, but something 1s

incorrect with the format, i.e. a line begins with a number (un—
signed), and does not have four partse

OCTAL NO, CONTAINS 8/9

IRREGULAR FUNCTION) .]
ABL thinks that a line contains an instruction, and its first part

has not been faulted by either of the two preceding Bowh&oﬂmv but
contains either more than 4 digits, or four with the first equal

to 2 or more.
WRONG FORMAT

A line contains items which cannot be identified; whatever kind
of items they are meant to be, something is wronge

(165)

L

P N s e .

- - . e -

el
e

11.6/4

NOT TERMINATED
A character which has no meaning in the current context is en-
countered within an item. When this occurs, ABL skips to the
next terminator,

ACCUMULATOR OVERFLOW
Fixed-Point Overflow is caused in the Accumulator as a result of
any arithmetic process required because of the form of any item.
In practice, this can only occur during the 'de-standardising’
process required by ‘d’ in the Floating-Point Number forms a:d,
a(b):d, a(b:c):d, and a(:c)sd.

SHIFT 23 PLACES Requested by a U or a D operator.

IMPERMISSIBLE +
Z in RO

* OUT OF RANGE
An attempt is made to compile an item into store with the trans—
fer address (*-P110) greater than or equal to J3, or less than O,
Compiling will continue from *=654321.,1 4 P110 in an attempt to
detect any other faultss

PARAMETER OR ROUTINE NO., TOO BIG
A parameter, routine, or copy number is greater than the permitted
highest value, that is

(i) if a reference is made to a routine number greater than 3999
(i%) if a routine parameter Aa is encountered with a >3999
(iI1) if a global parameter Ga is encountered with a 53999

(iv) if an attempt is made to set a preset parameter in the range P110 -
P119, unless it is one of the Special Preset Parameters, to set a
preset parameter Pa with a 119, or to use a preset parameter Pa,
with a 129

(v) if a reference is made te a library routine number greater than
1999

(vi) if a reference is made to a copy nunber of a library routine
greater than 1999

NOT IN LIBRARY
One of the forms L, La, La.b, E, ER, RLc appears within a library
routine, The monitoring occurs as the library routine is compiled,
but this monitor should only affect library routine writers or
private library routine userse.

EXCESS COMMA
Two or more commas or a comma after Multiple Space appear between
items or parts of an instruction on a line., A comma at the
begimning of a line will give rise to a WRONG FORMAT monitor.
For the purpose of this fault, comma is not the same as nultiple
spacej thus, for example, several TABS ave perfectly permissible
between itemss

(165)

114 6/5

LABEL NOT ALLOWED

For example, before an R or a T directive,

This occurs whenever the Supervisor, as opposed to the ABL
compiler, monitors any aspeot of the programe. The most common
cases are:

Exponent Overflow - (in any arithmetic arising from the form
of any items)

Input Not Defined = (after a use of the ‘P115=expression’
directive)

Output Not Defined - (after the use of the ‘Ta’ or ‘Ta<b’
directive)

Input Endede

The normal Supervisor fault printing comes first followed
by an ABL '?' monitor giving ‘where’ and the reconstructed line in
the usual form,.

This kind of monitoring can only occur once, because
of the Supervisor's system of private monitoring. If a second
error is caught by the Supervisor, only the Supervisor printing
will appear and the job will be terminated.

If this is the first fault in the program, then the
line 'ABL MONITORING’ will appear after the Supervisor monitor
printing but before the '?’ monitor printing.

The monitor Input inded may be due to a variety of
causes. The most common of these are:

(1) Unmatched [, In this case the compiler will scan through
the whole of the program locking for a Emdowpsm“u until
it hits Input “nded. This circumstance can be most easily
identified by the Line Count part of ‘where’ in the accom-
panying ABL monitoring. The compller does not recognize
labels whilst within a mﬂu sequence, but does count lines
in the normal manner, so the line count will be from the
last label before the ﬁ.

(ii) Un-terminated Enter Directive. This is tricky to spot
because the reconstructed line looks normal. In order to
avoid this monitor the ***Z or other document terminator
must not be on the same line as the final Enter directive,
since ABL inputs and reconstructs the whole record before
attempting to identify items,

(iii) Enter Directive omitted completelys

(iv) Un~terminated private Library Routine (i.e. the 'ZL*' record
omitted or punched incorrectly)e In this case the whole of
the remainder of the program is thought by ABL to be part
of the Library Routine.

(%65)

- . T S e e s . .
- O e O - e -

11,6/6

<Parameter > ALREADY SET AT «wherey

An attempt is made to set a parameter (Global or Routine) which has
already been set. The monitor here consists of one line only; mno
"reconstructed line’ is printed. An ‘RO’ directive will also cause
this fault. The parameter will retain its original value.

EXPRESSION INDETERMINATE

An expression, which has not been rejected for any of the above
reasons, cannot be fully evaluated when it should be. For mxﬁameu
if it is the right-hand side of a ‘Bexpression’ or '*=expression
directive or an Enter directive, then it needs to be evaluated
immediately, and if it cannot be (for example, wmomsmw.ow cﬁmmﬁ
parameters), then this monitoring will occur when the item is en-
countered - in the case of E or BR directives after any required
Library Routines have been compiledj or, if it is the address wmaﬁ
of an instruction, or a Half-word or Six-bit word, then if it is
still not determinate when the next E or ER directive 1is msoocu&muw@
- after any required library routines have been compiled - then this
monitoring will occur when the Enter Directive is encountered, after
any monitoring arising from any library routines. For the purpose
of counting errors, all parameters unset at the Enter directive are
treated as one fault.

The second line of this monitor printing consists not of the
complete reconstructed line in which the offending expression
ocourred, but only of thec expression itself, and this is snd nor-
mally in its original form but has been partly evaluated, including
the replacement of all set parameters by their values.

Because of this system of printing the expression, with known
parameter values fully substituted, the fact that, for mxmswwmw wwm
parameter A4/2 appears in the monitor printing indicates that it is
that paremeter which is unset and is causing the expression to be
indeterminate.

A reference in an expression to a parameter of a non-existent .
library routine will give rise to EXPRESSICN INDETZRMINATE monitor
printing when the next E or ER directive is mboocsdowm@ as well

as a monitor printing for ‘Library Routine NONEXISTENT (see Chapter
\ﬂmv_.

An attempt to divide by zero in an expression gives rise to
EXPRESSION INDETERMINATE monitor printing rather than DIVISION
OVERFLOW Supervisor monitor printing, for example, if expressions
such as A5QO or A5QA2 where A2=0 are encountered.

Exanples

A program being compiled attempts to print a title on an
undefined output stream, causing fault printing by both Supervisor
and compiler. Compiling continues, and further faults are found
until the error density is too great.

(1465)

11.6/7 a

OUTPUT NOT DEFINED

INSTR 787975 122,63 ,24 ,~1048576 B65 —1048575 B24 — 791295

INSTR 787976 1060,0 ,61 , 16 B61 =6

INSTR 787977 300,0 ,0 , 788005

Bl = 512 B3 =127 B4 = 0.1 B7 = 787202

B8 = 787372.4 B9 = 257.2 B10 = 2.4 B12 =126

B14 =~0,1 B15 = 786432 B16 = 917573.4 B17 = 917373.4

B18 = 917570,4 B20 — 911.4 B24 = 791203 B28 —1048576 |
B45 = 2.1 B61 —6 B63 =~1048575 B70 — 787583 _
B71 = 917371 B72 =1 B73 = 152.4 B78 = 128.1

B79 — 91747644 B8l = 917572.4 B88 = M7373.4 BYO = 787986

B! = 12.2 BO2 — 786740.2 B93 = 786740,2 B9 = 10

B96 ==1044754 B97 =—130560,1 B98 = 26265645

ABL MONITORING

1,2 A0/0 2
™0

omesl o aemsl e

-

1,9 A0/0 SHIFT $23 PLACES
HU24

0,10 AO/0 * OUT OF RANGE
121,2,0,A5680

4,10 A0/O0 PARAMETER OR ROUTINE NO. TCO BIG
121,2,0,A5680

1544 bc\o EXPRESSION INDETIRM INATE
P1OMY7

4,13 A0/0 INSTRUCTION?
121,0,0,0,0

0,14 A0/0 IRREGULAR FUNCTION
12345601 UY

1,15 A0/0 WRONG FORMAT
FyKl, 4y 44(=1,-18, 4530

3,15 A0/O WRONG FURMAT

TOO MANY ERRORS

(1,65) |

-— s ER Em ¥

12.1M

Chapter 12

.

FURTHER FACILITIES AND TECHNIQUES

For most purposes, the information given in the earlier chapters is
sufficient to allow adequate and efficient programs to be written. Oocasione
ally, however, it may be possible to increase the efficiency of program
writing or execution; the following seotions desoribe how this may be effected.

1241 Prograrmed Drum Transfers

In the great majority of progrems, the user will wish to take advantage
of the one level store concept and will regard the core store and drums as a
single, large main store. Programs are written as if the entire store were
core store, and the Supervisor will automatically control the transfer of
512-word blocks between the drums and the core store as needed,

However, circumstances can arise in which 1t is useful to exercise
some degree of control over these block transfers, both to ensure that blocks
of information are already available in the core store when required, and to
clear space in the core store by releasing blocks to the drums as soon as
they are no longer nceded; the extracodes provided for these purposes are all
designed to assist towards greater economy of time by the avoidance of un=
necessary Supervisor drum transfers. To understand just how the programmer
may assist the Supervisor, it is necessary to consider the means provided fo
the regulation of automatic drum transfers. ;

In addition to any store locction explicit in each instruction, there
is implicit a store reference to the location containing the instruction
word itself; in either case, the address is taken to specify both a block and
a word within that block. The block address is invariebly interpreted as a
store request, and the Supervisor will initiate a drum transfer if the block
is not already in the core store., Normally there will be only one copy of a
particular block, occupying either a page in the core store or a sector on
one of the drums. With each 512-word page of the core store there is asso-
ciated a Page Address Register (P.A.R.) containing the number of the block
occupying the page at any particular time; there is also a lock-out digit
which is set whenever the page is involved in a drum or peripheral transfer
and so is not available to the main program. At every store request, the
block address is automatically compared with the content of each P.A.Re; if a
coincidence is found, the store reference is completed by the extraction of
the required word from the appropriate page. Otherwise a non-equivalence
interrupt occurs and the Supervisor drum transfer program is entered; this is
in two parts, one to carry out the actual block transfers and the other to
decide which page of information should next be transferred to a drum to make
space available in the core store.

411 requests for information transfers between the core and the drum
stores, whether originated by the Supervisor or called for directly by an
object program, are placed in a drum gqueuc holding up to 64 entries which are
dealt with in the order of their occurrence. The drun transfer routine is
re-entered repeatedly until the queue is cleared.

(1,65)

12.1/2

It is arranged that there shall always be at least one free
page in the core store, so that, whenever the drum transfer routine
is entered, the first ‘read’ request in the drum queue can be implemented.
Then, whilst this transfer is taking place, the drum transfer learning
program decides which page may next be freed by writing its contents
away to a drum. This decision is made on the basis of the frequency of
past references to each block of information, and with the intention of
choosing the core store page least likely to be referred to.

The drum learning program only attempts to predict future
store needs in the light of past requests; it anticipates neither the
termination of references to a particular block of information nor the
imminent requirement for a new block. Hence, there arise in the main
two ways of assisting the Supervisor by means of programmed drum transfers;
firstly by releasing core store pages no longer required, and secondly
by initiating the reading of a new block of information from a drum to
the core store before it is actually referred to. These are both of
marked advantage to the system as a whole: the first plainly helps towards
efficient utilisation of the available facilities, and the second can
of'ten prove of even greater benefit and economy by reducing the time spent
in waiting for drum transfers to be completed - this is especially
significant in the inner loops of a program. It will be appreciated that
the time during which a program is held up waiting for a drum transfer
is still wasteful, notwithstanding time-sharing, since it may take
from 1.3 to 2.7 milliseconds, depending on the core store size, to switch
to another program and & similar length of time to switch back later.

Ideally, a ’‘read’ transfer should be timed to reach completion
only just before the first reference is made to the block; otherwise
the Supervisor may choose to write the block away to the drum again before
the program comes to use it. The actual transfer of a block of 512 words
takes 2 milliseconds, but there is an initial delay of up to 12
milliseconds, the revolution-time of the drum.

The core store of Atlas is arranged in 4096 word stacks, with
16 pages of information sharing cach pair of stacks, and each stack
having its own access equipment; to take advantage of this, and so to
attain maximum speed, operands and instructions should be arranged, as
far as is possible, in different pairs of stacks. it Manchester, the
Supervisor endeavours to read down instructions to pages 0 to 15 and
operands to the remaining pages of the machine; in the event of a
non-equivalence interrupt the preference is automatic, being determined
by the non-availability in the core store of an operand or an instruction
as the case may be; in the case of a programmed drum transfer, the
preference must be indicated by affixing a bit 1 before the address
of a block of instructions, and O before the address of a block of
operands. This preference bit will be the most significant bit of n
(singly modified) or of ba where appropriate. At the other installations,
where there is more store, instructions and operands are placed in
different pairs of stacks whenever possible. Pages 0-15 form one
stack pair, as do pages 15-31, 32-47, etc.

Ixtracodes are available for the purposes we have @Mmosmmm@
and these will now be described with the help of the following notation:

(1.65)

12,1/53
Block address, P= Hup = bits 1 to 11 of n
Block address, wm = bits 1 to 11 of ba
Number of blocks, K="Thits 21 to 23 of n
Logical band number, D ="bits 15 to 20 of n
Band or page number, d = bits 13 to 20 of ba
Section number, k =Dbits 21 to 23 of Dba

) In 211 but two of the extracodes which follow, whenever.information
is transferred to a new block, the old block is made frees The exceptions

are 1162 and 1163, where a block is to be duplicated leaving the original
copy intact.

Further, when a block is quoted as the destination of an information
transfer, either directly or as the result of renaming, any existing block
of the same name is lost, This will apply even if the name quoted as that
of the source is unallocated, and will in fact be the only action teken in

suoh a case. Also, in those instructions referring to two block addresses,
these addresses should not be the same.

135 91’ =c and ¢’ = n if block nunber > ba newly defined.
Henceforth, each time a block with a number > ba is newly
defined by a non~equivalence, store current control in B91
and jump to n. The block number in ba occupies bits 1 to
11 and the remaining bits of ba are ignored. The contents
of Ba are undisturbed. The instruction causing the non-
equivalence is not executed. n is singly modified.

1155 ba’ = smallest block label > n defined.
Place in bits 1 to 11 of ba the smallest block number >n
which is defined for this progr m. The remaining bits of ba
are left cleared, Only bits 1 to 11 of n are used. n is
singly modifieds If all the program’s blocks are < n, then

bit O of ba’ is made 1 and the remaining bits are cleared.

1160 Read block P.
If P is not already in the core store, the transfer request
is inserted in the drum queue exactly as if a non-equivalence
interrupt had occurred, but control is restored to the objest
program immediately the drum queue entry has been made.
Should the queue be already full, the object program will be
halted until the entry can be inserted.

1161 Release block P from the core store.
This extracode adjusts the parameters used by the drum learning
program so as to cause it to choose block P next for writing
away to the drum store, if this has not already occurred. No
entry is made in the drum queue and the transfer will in
general take place earlier than if extracode 1165 (below)
had been used.

1162 Duplicate block Py as Py in the core store.
Any existing block P, is always lost, and, if P; is alloeated,

(1.65)

1163

1164

1165

1166

1167

1170

1174

12.1/4

a oopy of it will be formed as Pz in the core storc. Unless
the drum store is full, block P+ will finally be located
there; otherwise P1 will be left in the core store. Py s Pas

Duplicate block P, as.Pg in the drum sbores.

Provided P; is allocated, the effect of this extracode is to
form a duplicate copy of ite It will be arranged that one
copy shall always be left in the core store and named P; ;
the second copy, named Pz, will be put in the drum store un-
less this is full, in which case it will be left in the core
store. Any previously existing block Pz will be lost in all
casese P1 # Pao

Rename block P; as Pjoe

If P, is allocated, the appropriate entry in the drum direo-
tory or the core store PsA.R. is altered to Pze Any Py pre-
viously existing will be loste There must be at least one
more block allowed for in the job description than is defined
at that moment. Py £ Pge

Write block P,

Provided P is allocated and is not already on a drum, it is
transferred to the next empty sectors Should the drum store
be full, block P is releascd, precisely as in 1161,

Read block P 1o absolute page de

This extracode makes possible full control of the store by
those exceptional programs for which this may be worthwhile.
Before using 1166, the program must set a trap in case page d
is locked down and reserved by the Supervisor.

d is in the integer position of ba and defines the absolute
number of a page in the core store to which block P is to be
transferred. Before this transfer tekes place, sny existing
contents of d are copied to a free page,

Lose block P.
If P is allocated, the page or sector occupied by it is made
free,

Clear new blocks/Do not clear new blocks.,
When a program refers to a main store block for the first
time, the Supervisor allocates a freec page of the core store;
floating~-point zero will be written in all 512 words if the
clear blocks switch is set. Initially, this switoh is set
to clear all new blocks, but it may subsequently be set or
reset by means of extracode 1170 according to the sign bit of
ns-

n>0 Clear new blocks.

n«?o© Do not clear new blockse

Change store allocation to n blocks.

Each program has some number of main store blocks assigned
to it. This number may be altered during the execution of
the program by the use of extracode 1171. If there are less

(1,65)

- @ B B Y EE == = =

=

1172

1173

1174

1475

1176

1177

12.1/5

than n blocks available in the store, then the program will
be faulted for ILLEGAL FUNCTION and EXCESS BLOCKS.

Set ba’ = number of pages available.

This extracode provides an estimate of the number of ocore
store pages available tc the program at a particular moment.
It cannot be assumed that this number of pages will continue
to be available, since the core store allocations are always
fluctuating., ,

Set ba’ = number of blocks available,

At a particular moment, this extracode records the maximum
number of main store blocks available, consisting of all un~
allocated blocks together with those already allocated to the
progran itself,

Reserve band D,
A complete band of the drum store is reserved for the program
and may subsequently be referred to as band D.

Read K 4 1 blocks from band d, starting at sector k.

d must already be defined by extracode 1174. The K 41
successive sectors k, k +1,.0., k + K are read to store
blocks P, P + 1,eee, P + Ko If K is 6 (or 7), sectors k
(or k and k + 1) will be read twice. Thus if K= 6, blocks
P and P 4+ 6 will both ocontain seotor ke If k is 6 or 7, it
is taken as O or 1 respegtively. All blocks involved are
locked down until the entire transfer is completee

Write K +1 blocks to drum band d starting at sector ks

d must already be defined by extracode 1174. This extracode
writes store blocks P, P + Tess, P + K to drum sectors k,

k +1,e00y k¥ + K. Sectors 6 and 7 are the same as sectors

0 and 1, If K exceeds 5 some of the earlier blocks are
overwritten, Thus if K = 6, sector k will finally ocontain
block P + K rather than block P.

Lose band D.

The band of the drum store previously reserved as logical
band D is freed and mede available for general usee.

(1.65)

